• 제목/요약/키워드: Sol-gel matrix

검색결과 104건 처리시간 0.022초

복합고분자 용액법을 이용한 TiO2 광촉매 제조 및 특성 평가 (Fabrication and Characterization of Photocatalytic TiO2 prepared by Polymer Complex Solution Method)

  • 장정욱;정영근;김태오
    • 한국분말재료학회지
    • /
    • 제12권4호
    • /
    • pp.249-254
    • /
    • 2005
  • Titanium dioxide was prepared by Polymer Complex Solution Method(PCSM) according to the mole ratio of Titanium (IV) isopropoxide(TTIP)/solvent and polymer(Poly Ethylene Glycol). Polymer electrolytes were usually made by dispersing preproduced ceramic nanoparticles in a polymer matrix. Using this method, pure and nano-sized $TiO_2$ powder was synthesized through a simple procedure and polymer entrapment route. At the optimum amount of the polymer, the titanium ions are dispersed in solution and a homogeneous polymeric network is formed. The maximum intensity of anatase phase of $TiO_2$ was achieved by calcining at $500^{\circ}C$ for 2h. The synthesized $TiO_2$ powders were nano-sized and the average size was about 50nm. Anatase/Rutile ratio of the synthesized $TiO_2$ was 70%/30%.

Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone)(sPPES)/Silica Membrane for Proton Exchange Membrane Materials

  • Kim, Dae Sik;Park, Ho Bum;Nam, Sang Young;Rhim, Ji Won;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.44-54
    • /
    • 2004
  • Organic-inorganic composite membranes based on sulfonated poly(phthalazinone ether sulfone) (sPPES)/silica hybrid were prepared using the sol-gel process under acidic conditions. The sulfonation of PPES with concentrated sulfuric acid as sulfonation agent was carried out to prepare proton exchange membrane material. The behaviors of the proton conductivity and methanol permeability are depended on the sulfonation time (5-100 hr). The hybrid membranes composed of highly sulfonated PPES (IEC value: 1.42 meq./g) and silica were fabricated from different silica content (5-20 wt%) in order to achieve desirable proton conductivity and methanol permeability demanded for fuel cell applications. The silica particles within membranes were used for the purpose of blocking excessive methanol cross-over and for forming the path way to transport of the proton due to absorbing water molecules with ≡SiOH on silica. The presence of silica particles in the organic polymer matrix results in hybrid membranes with reduced methanol permeability and improved proton conductivity.

고체전지용 $Li_xV_3O_8$ Composite 정극의 전기화학적 특성 (Electrochemical Properties of $Li_xV_3O_8$ Composite Cathode for All-solid state Rechargeable Battery)

  • 김종욱;성창호;구할본;박복기
    • 한국전기전자재료학회논문지
    • /
    • 제11권9호
    • /
    • pp.733-738
    • /
    • 1998
  • 본 논문에서는 고체 리듐 전지를 개발하기 위하여 poly(ethylene oxide) [PEO] 에 $LiClO_4$, poly (vinylidene fluoride) [PVDF] 및 가소제로 propylene carbonate [PC] 와 ethylene carbonate[EC] 등을 혼합여 고분자 저해질을 제조하였다. 또한 고체 리듐 전지용 정극으로써 우수한 특성이 기대되는 $Li_xV_3O_8$을 졸-겔법에 의해 합성하여 $Li_xV_3O_8$SPE/Li cell 의 전기화학적 특성을 측정하였다. 고분자 matrix는 PEO와 PVDE를 혼합 사용한 결과 $PEO_4 PVDF_4LiCIO_4PC_5EC_5$ 고분자 전해질이 상온에서 $5.2 {\times} 10{-3}$ S/cm 의 높은 이온 전도도를 나타냈으며 리듐 이온 transference number는 0.3이었다. 졸-겔법에 의해 제조된 $Li_xV_3O_8$을 사용한 $Li_xV_3O_8$SPE/Li cell의 방전시 cell 저항이 방전 초기에는 비소한 증가를 하다가 방전 말기 전압인 2.0V에서 크게 증가하였다. $Li_xV_3O_8$ composite 정극의 첫 번째 방전 용량은 295㎃h/g이었으며 8번째 충방전 싸이클부터 방전 용량이 안정화 되었고 15번째 방전 용량도 212㎃h/g으로 고체 전지용 정극으로써 우수한 특성을 보였다.

  • PDF

마이크로플레이트 기반 생물반응기 시스템 (MABOOMSTM)을 이용한 대장균 배양공정에서 용존산소, pH 및 세포농도의 온라인 모니터링 연구 (Study on Online Monitoring of Dissolved Oxygen, pH and Cell Concentration in E. coli Cultivation Processes Using MABOOMSTM)

  • 손옥재;이종일
    • KSBB Journal
    • /
    • 제28권1호
    • /
    • pp.24-30
    • /
    • 2013
  • Dissolved oxygen, pH and cell concentration have been online monitored in cultivation processes with Escherichia coli by using a $MABOOMS^{TM}$ (microplate-based bioreactor with optical online monitoring systems). Fluorescent sensing membranes containing Ru ${(dpp)_3}^{2+}$ or HPTS were prepared with GA sol-gel matrix and coated into a well of a 24-well microplate. Fluorescence intensity was measured and correlated to the dissolved oxygen or pH. Cell concentrations were also online monitored by measuring optical reflectance at 650 nm. A well of a 24-well microplate could also be divided into 4 parts, each of which was coated with fluorescent sensing membranes for the detection of dissolved oxygen or pH. The 24-well microplate coated with fluorescent sensing membranes or a 4-divided sensing membrane. was used to online monitor the dissolved oxygen, pH and cell concentration during E. coli cultivations. The online monitoring results showed the characteristics of cell growth in cultivation processes very well.

Preparation of SiO2-CuO-CeO2 Composite Powders and Its Thin Film Templated with Oxalic Acid

  • Son, Boyoung;Jung, Miewon
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.526-530
    • /
    • 2012
  • Silica-based ceramic-matrix composites have shown promise as advanced materials for many applications such as chemical catalysts, ceramics, pharmaceuticals, and electronics. $SiO_2$-CuO-$CeO_2$ multi-component powders and their thin film, using an oxalic acid template as a chelating agent, have larger surface areas and more uniform pore size distribution than those of inorganic acid catalysts. $SiO_2$-CuO-$CeO_2$ composite powders were synthesized using tetraethylorthosilicate, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate with oxalic acid as template or pore-forming agent. The process of thermal evolution, the phase composition, and the surface morphology of these powders were monitored by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectrometry (EDXS). The mesoporous property of the powders was observed by Brunner-Emmett-Teller surface (BET) analysis. The improved surface area of this powder template with oxalic acid was $371.4m^2/g$. This multi-component thin film on stainless-steel was prepared by sol-gel dip coating with no cracks.

Eu3+/Tb3+Co-Doped Cerium Oxide Transparent Nanocomposite for Color-Tunable Emission

  • Li, Xiaoyan;Yu, Yunlong;Guan, Xiangfeng;Luo, Peihui;Jiang, Linqin;Zheng, Zhiqiang;Chen, Dagui
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850119.1-1850119.6
    • /
    • 2018
  • $Eu^{3+}/Tb^{3+}$ co-doped nanocomposite containing $CeO_2$ nanocrystals was successfully prepared by an in situ sol-gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of $CeO_2$ nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of $CeO_2$ content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.

Electrodeposition of AuPt Alloy Nanostructures on a Biotemplate with Hierarchically Assembled M13 Virus Film Used for Methanol Oxidation Reaction

  • Manivannan, Shanmugam;Seo, Yeji;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.284-293
    • /
    • 2019
  • Herein, we report an electrode surface with a hierarchical assembly of wild-type M13 virus nanofibers (M13) to nucleate the AuPt alloy nanostructures by electrodeposition. M13 was pulled on the electrode surface to produce a virus film, and then a layer of sol-gel matrix (SSG) was wrapped over the surface to protect the film, thereby a bio-template was constructed. Blending of metal binding domains of M13 and amine groups of the SSG of the bio-template were effectively nucleate and directed the growth of nanostructures (NSs) such as Au, Pt and AuPt alloy onto the modified electrode surface by electrodeposition. An electrocatalytic activity of the modified electrode toward methanol oxidation in alkaline medium was investigated and found an enhanced mass activity ($534mA/mg_{Pt}$) relative to its controlled experiments. This bio-templated growth of NSs with precise composition could expedite the intention of new alloy materials with tuneable properties and will have efficacy in green energy, catalytic, and energy storage applications.

Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s

  • Hashemi, Adeleh;Bahari, Ali
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1546-1552
    • /
    • 2018
  • The polymer nanocomposite as a gate dielectric film was prepared via sol-gel method. The formation of crosslinked structure among nanofillers and polymer matrix was proved by Fourier transform infrared spectroscopy (FT-IR). Differential thermal analysis (DTA) results showed significant increase in the thermal stability of the nanocomposite with respect to that of pure polymer. The nanocomposite films deposited on the p- and n-type Si substrates formed very smooth surface with rms roughness of 0.045 and 0.058 nm respectively. Deconvoluted $Si_{2s}$ spectra revealed the domination of the Si-OH hydrogen bonds and Si-O-Si covalence bonds in the structure of the nanocomposite film deposited on the p- and n-type Si semiconductor layers respectively. The fabricated n-channel field-effect-transistor (FET) showed the low threshold voltage and leakage currents because of the stronger connection between the nanocomposite and n-type Si substrate. Whereas, dominated hydroxyl groups in the nanocomposite dielectric film deposited on the p-type Si substrate increased trap states in the interface, led to the drop of FET operation.

Development of a Fluorescent Sensor Based on Resazurin and Hydrotalcite for the Determination of Ethanol in Alcoholic Beverages

  • Hong Dinh Duong;Juyeon Kim;Jong Il Rhee
    • 센서학회지
    • /
    • 제33권2호
    • /
    • pp.70-77
    • /
    • 2024
  • In this study, a fluorescent ethanol sensor is developed to determine the ethanol concentration in the liquid phase. The sensor is developed using a complex of resazurin (RA)/resorufin (RO) and a hydrotalcite (HT) catalyst in a sol-gel matrix of methyltrimethoxysilane (MTMS) to produce a fluorescent ethanol-sensing membrane (RA/RO*HT membrane). The operation mechanism of the RA/RO*HT membrane is based on (i) the oxidation of ethanol to acetaldehyde and (ii) the reduction of RA to RO, through electron flows followed by EtOH ↔ HT ↔ RA/RO ↔ EtOH interactions. These possible redox reactions can lead to an increased fluorescence intensity of the RA/RO*HT membrane as the ethanol concentration increases. The RA/RO*HT membrane shows a linear detection range of 1-20 vol.% EtOH with limit of detection (LOD) of 0.178%. Additionally, the RA/RO*HT membrane has high sensitivity and accuracy for determining the alcohol content in several Korean alcoholic beverages.

Influence of pH and Dye Concentration on the Physical Properties and Microstructure of New Coumarin 4 Doped SiO2-PDMS ORMOSIL

  • Oh, E.O.;Gupta, R.K.;Cho, N.H.;Yoo, Y.C.;Cho, W.S.;Whang, C.M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권3호
    • /
    • pp.299-305
    • /
    • 2003
  • Physical properties and microstructure of new coumarin 4 doped $SiO_2$-PDMS ORMOSILs, synthesized by one-step (OS, acid-catalysis) and two-step (TS, acid-base catalysis) routes of sol-gel method with varying pH (0.6 to 7) and dye content $(5\;{times}\;10^{-4}\;to\;5{\times}\;10^{-2}\;mole)$, are reported. BET, UV-visible spectroscopy and SEM were used for characterizations. The increase in acid or base concentration increased the size of pores and aggregated silica particles. The samples with pH ≤ 2.5 were transparent and attributed to the small size of pores (~20 Å) and silica particles. The samples with pH > 2.5 were translucent or opaque due to non-uniform pore system formed by voids and large aggregated silica particles. The surface area was found a key factor controlling the interactions between the gel matrix and the dye. The OS samples with the highest dye concentration exhibited the minimal values of pore size, surface area and silica particle size, resulting in the concentration-quenching phenomenon.