DOI QR코드

DOI QR Code

Eu3+/Tb3+Co-Doped Cerium Oxide Transparent Nanocomposite for Color-Tunable Emission

  • Li, Xiaoyan (College of Physics and Energy, Fujian Normal University) ;
  • Yu, Yunlong (Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University) ;
  • Guan, Xiangfeng (Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University) ;
  • Luo, Peihui (Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University) ;
  • Jiang, Linqin (Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University) ;
  • Zheng, Zhiqiang (College of Physics and Energy, Fujian Normal University) ;
  • Chen, Dagui (Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University)
  • Received : 2018.07.21
  • Accepted : 2018.09.06
  • Published : 2018.10.31

Abstract

$Eu^{3+}/Tb^{3+}$ co-doped nanocomposite containing $CeO_2$ nanocrystals was successfully prepared by an in situ sol-gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of $CeO_2$ nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of $CeO_2$ content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Fujian Province, Fujian Education Department

References

  1. C. Y. Lv, C. Zhu, C. X. Wang, Y. H. Gao, X. Y. Ma and D. R. Yang, Appl. Phys. Lett. 106, 141102 (2015). https://doi.org/10.1063/1.4917224
  2. X. Y. Zhao, S. Q. He and M. C. Tan, J. Mater. Chem. C. 36, 8349 (2016).
  3. D. Prakashbabu, H. B. Ramalingam, R. HariKrishna, B. M. Nagabhushana, C. Shivakumara, K. Munirathnam and S. Ponkumar, J.Lumin. 192, 496 (2017). https://doi.org/10.1016/j.jlumin.2017.07.015
  4. H. Zhang, J. S. Han and B. Yang, Adv. Funct. Mater. 20, 1 (2010).
  5. L. X. Wang, X. J. Yang, Q. T. Zhang, B. Song and C. P. Wong, Mater. Des. 125, 100 (2017). https://doi.org/10.1016/j.matdes.2017.04.003
  6. X. W. Zhang, S. B. Lin, T. Lin, P. Zhang, J. Xu, L. Xu and K. J. Chen, Phys. Chem. Chem. Phys. 17, 11974 (2015). https://doi.org/10.1039/C5CP00246J
  7. R. J. Wiglusz, A. Bednarkiewicz and W. Strek, J. Rare Earth 29, 1111 (2011). https://doi.org/10.1016/S1002-0721(10)60608-4
  8. M. Dai Pre, A. Martucci, D. J. Martin, S. Lavina and V. Di Noto, J. Mater. Sci. 50, 2218 (2015). https://doi.org/10.1007/s10853-014-8784-0
  9. W. Cai, A. W. Wang, L. Fu, J. Hu, T. K. Rao, J. Q. Wang, J. S. Zhong and W. D. Xiang, Opt. Mater. 43, 36 (2015). https://doi.org/10.1016/j.optmat.2015.02.020
  10. X. D. Zhou and H. C. Gu, J. Mater. Sci. 21, 577 (2002).
  11. J. Zhang, S. C. Luo, L. L. Gui and Y. Q. Tang, J. Mater. Sci. 32, 1469 (1997). https://doi.org/10.1023/A:1018553901058
  12. S. Li, M. S. Toprak, Y. S. Jo, J. Dobson, D. K. Kim and M. Muhammed, Adv. Mater. 19, 4347 (2007). https://doi.org/10.1002/adma.200700736
  13. H. Althues, P. Simon and S. Kaskel, J. Mater. Chem. 17, 758 (2007). https://doi.org/10.1039/B611917D
  14. V. Bounor-Legare and P. Cassagnau, Prog. Polym. Sci. 39, 1473 (2014). https://doi.org/10.1016/j.progpolymsci.2014.04.003
  15. J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya and C. Shivakumara, J. Alloy. Compd. 590, 131 (2014). https://doi.org/10.1016/j.jallcom.2013.11.213
  16. S. Fujiharaa and M. Oikawa, J. Appl. Phys. 95, 8002 (2004). https://doi.org/10.1063/1.1751240
  17. H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar and C. Shivakumara, Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63 (2015). https://doi.org/10.1016/j.saa.2015.02.075
  18. D. Avram, I. Porosnicu, B. Cojocaru, M. Florea and C. Tiseanu, J. Lumin. 179, 265 (2016). https://doi.org/10.1016/j.jlumin.2016.07.026
  19. T. Ninjbadgar, G. Garnweitner, A. B€orger, L. M. Goldenberg, O. V. Sakhno and J. Stumpe, Adv. Funct. Mater. 19, 1819 (2009). https://doi.org/10.1002/adfm.200801835
  20. K. Q. Liu, M. Q. Zhong, F. Chen, Y. Q. Shi and J. T. Yang, J. Chin. Rare Earth Soc. 29, 737 (2011). https://doi.org/10.1016/S1002-0721(10)60533-9
  21. R. T. Chai, H. Z. Lian, Z. Y. Hou, C. M. Zhang, C. Peng and J. Lin, J. Phys. Chem. C 114, 610 (2010). https://doi.org/10.1021/jp909180s
  22. A. A. Ansari, J. Semicond. 31, 053001 (2010). https://doi.org/10.1088/1674-4926/31/5/053001
  23. Z. L. Wang, Z. W. Quan and J. Lin, Inorg. Chem. 46, 5237 (2007). https://doi.org/10.1021/ic0701256
  24. T. Masui, K. Fujiwara, K. Machida and G. Adachi, Chem. Mater. 9, 2197 (1997). https://doi.org/10.1021/cm970359v
  25. Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang and Y. S. Wang, J. Alloy Compd. 513, 626 (2012). https://doi.org/10.1016/j.jallcom.2011.11.032
  26. L. Li, H. K. Yang, B. K. Moon, Z. L. Fu, C. F. Guo, J. H. Jeong, S. S. Yi, K. Jang and H. S. Lee, J. Phys. Chem. C 113, 610 (2009).
  27. K. Sawada and S. Adachi, J. Lumin. 165, 138 (2015). https://doi.org/10.1016/j.jlumin.2015.04.032
  28. Y. Chu, H. X. Hao, H. D. Xie, C. L. Chen, P. Q. Cai and H. J. Seo, J. Mater. Sci. 28, 5615 (2017).