DOI QR코드

DOI QR Code

Electrodeposition of AuPt Alloy Nanostructures on a Biotemplate with Hierarchically Assembled M13 Virus Film Used for Methanol Oxidation Reaction

  • Manivannan, Shanmugam (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University) ;
  • Seo, Yeji (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University) ;
  • Kim, Kyuwon (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
  • Received : 2019.02.13
  • Accepted : 2019.03.19
  • Published : 2019.09.30

Abstract

Herein, we report an electrode surface with a hierarchical assembly of wild-type M13 virus nanofibers (M13) to nucleate the AuPt alloy nanostructures by electrodeposition. M13 was pulled on the electrode surface to produce a virus film, and then a layer of sol-gel matrix (SSG) was wrapped over the surface to protect the film, thereby a bio-template was constructed. Blending of metal binding domains of M13 and amine groups of the SSG of the bio-template were effectively nucleate and directed the growth of nanostructures (NSs) such as Au, Pt and AuPt alloy onto the modified electrode surface by electrodeposition. An electrocatalytic activity of the modified electrode toward methanol oxidation in alkaline medium was investigated and found an enhanced mass activity ($534mA/mg_{Pt}$) relative to its controlled experiments. This bio-templated growth of NSs with precise composition could expedite the intention of new alloy materials with tuneable properties and will have efficacy in green energy, catalytic, and energy storage applications.

Keywords

References

  1. Lee, S. Y.; Lim, J. S.; Harris, M. T., Biotechnol. Bioeng., 2012, 109(1), 16-30. https://doi.org/10.1002/bit.23328
  2. Flynn, C. E.; Lee, S. W.; Peelle, B. R.; Belcher, A. M., Acta Mater., 2003, 51(19), 5867-5880. https://doi.org/10.1016/j.actamat.2003.08.031
  3. McMillan, R. A.; Paavola, C. D.; Howard, J.; Chan, S. L.; Zaluzec, N. J.; Trent, J. D., Nat. Mater.,2002, 1(4), 247-252. https://doi.org/10.1038/nmat775
  4. Manivannan, S.; Seo, Y.; Kang, D. K.; Kim, K., New J. Chem., 2018, 42(24), 20007-20014. https://doi.org/10.1039/C8NJ04496A
  5. Naik, R. R.; Stringer, S. J.; Agarwal, G.; Jones, S. E.; Stone, M. O., Nat. Mater., 2002, 1(3), 169-172. https://doi.org/10.1038/nmat758
  6. Flynn, C. E.; Mao, C.; Hayhurst, A.; Williams, J. L.; Georgiou, G.; Iverson, B.; Belcher, A. M., J. Mater. Chem., 2003, 13(10), 2414-2421. https://doi.org/10.1039/B307593A
  7. Flynn, C. E.; Lee, S.-W.; Peelle, B. R.; Belcher, A. M., Acta Mater.,2003, 51(19), 5867-5880. https://doi.org/10.1016/j.actamat.2003.08.031
  8. Bricarello, D. A.; Smilowitz, J. T.; Zivkovic, A. M.; German, J. B.; Parikh, A. N., ACS Nano, 2010, 5 (1), 42-57. https://doi.org/10.1021/nn103098m
  9. Sleytr, U. B.; Messner, P.; Pum, D.; Sara, M., Angew. Chem. Int. Ed., 1999, 38(8), 1034-1054. https://doi.org/10.1002/(SICI)1521-3773(19990419)38:8<1034::AID-ANIE1034>3.0.CO;2-#
  10. Manivannan, S.; Kang, I.; Seo, Y.; Jin, H. E.; Lee, S. W.; Kim, K., ACS Appl. Mater. Interfaces, 2017, 9(38), 32965-32976. https://doi.org/10.1021/acsami.7b06545
  11. Seo, Y.; Manivannan, S.; Kang, I.; Lee, S. W.; Kim, K., Biosens. Bioelectron., 2017, 94, 87-93. https://doi.org/10.1016/j.bios.2017.02.036
  12. Chung, W. J. ; Oh, J. W. ; Kwak, K. W. ; Lee, B. Y. ; Meyer, J; Wang, E; Hexemer, A; Lee, S. W. Nature. 2011, 478, 364-368. https://doi.org/10.1038/nature10513
  13. Kang, I.; Shin, W. S.; Manivannan, S.; Seo, Y.; Kim, K., J. Electrochem. Sci. Technol., 2016, 7(4), 277-285. https://doi.org/10.33961/JECST.2016.7.4.277
  14. Seo, Y.; Manivannan, S.; Kang, I.; Shin, W. S.; Kim, K., J. Electrochem. Sci. Technol., 2017, 8(1), 25-34. https://doi.org/10.33961/JECST.2017.8.1.25
  15. Manivannan, S.; Kim, K., Electroanalysis, 2016, 28(7), 1608-1616. https://doi.org/10.1002/elan.201501104
  16. Lee, Y.; Kim, J.; Yun, D. S.; Nam, Y. S.; Shao-Horn, Y.; Belcher, A. M., Energy Environ. Sci., 2012, 5(8), 8328- 8334. https://doi.org/10.1039/c2ee21156d
  17. Manivannan, S.; Ramaraj, R., J. Nanopart. Res., 2013, 15(10), 1978(1-13). https://doi.org/10.1007/s11051-013-1978-6
  18. Yoo, S. Y.; Oh, J. W.; Lee, S. W., Langmuir 2012, 28(4), 2166-2172. https://doi.org/10.1021/la203840n
  19. Mao, C.; Flynn, C. E.; Hayhurst, A.; Sweeney, R.; Qi, J.; Georgiou, G.; Iverson, B.; Belcher, A. M., Proc. Natl. Acad. Sci. U.S.A., 2003, 100(12), 6946-6951. https://doi.org/10.1073/pnas.0832310100
  20. Manocchi, A. K.; Horelik, N. E.; Lee, B.; Yi, H., Langmuir, 2010, 26(5), 3670-3677. https://doi.org/10.1021/la9031514
  21. Yang, C.; Manocchi, A. K.; Lee, B.; Yi, H., Appl. Catal., B, 2010, 93(3-4), 282-291. https://doi.org/10.1016/j.apcatb.2009.10.001
  22. DePorter, S. M.; McNaughton, B. R., Bioconjugate Chem., 2014, 25(9), 1620-1625. https://doi.org/10.1021/bc500339k
  23. Chung, W. J.; Merzlyak, A.; Yoo, S. Y.; Lee, S. W., Langmuir 2010, 26(12), 9885-9890. https://doi.org/10.1021/la100226u
  24. Merzlyak, A.; Indrakanti, S.; Lee, S. W., Nano Letters 2009, 9(2), 846-852. https://doi.org/10.1021/nl8036728
  25. Chung, W. J.; Merzlyak, A.; Lee, S. W., Soft Matter 2010, 6(18), 4454-4459. https://doi.org/10.1039/c0sm00199f
  26. Yang, S. H.; Chung, W. J.; McFarland, S.; Lee, S. W., Chemical Record 2013, 13(1), 43-59. https://doi.org/10.1002/tcr.201200012
  27. Drummy, L. F.; Jones, S. E.; Pandey, R. B.; Farmer, B. L.; Vaia, R. A.; Naik, R. R., ACS Appl. Mater. Interfaces, 2010, 2(5), 1492-1498. https://doi.org/10.1021/am1001184
  28. Manivannan, S.; Kim, K., J. Electroanal. Chem., 2016, 776, 82-92. https://doi.org/10.1016/j.jelechem.2016.06.009
  29. Choi, K-H.; Lee, K-S.; Jeon, T-Y.; Park, H-Y.; Jung, N.; Chung, Y-H.; Sung, Y-E., J. Electrochem. Sci. Technol.,2010, 1(1), 19-24. https://doi.org/10.33961/JECST.2010.1.1.019
  30. Shin, D.; Kim, Y-R.; Choi, M.; Rhee, C. K., J. Electrochem. Sci. Technol., 2014, 5(3), 82-86. https://doi.org/10.33961/JECST.2014.5.3.82
  31. Ponmani, K.; Kiruthika, S.; Muthukumaran, B., J. Electrochem. Sci. Technol.,2015, 6(3), 95-105. https://doi.org/10.33961/JECST.2015.6.3.95

Cited by

  1. Interfacing Silicate Layer Between MoO3 Ribbon and Pt Metaldots Boosts Methanol Oxidation Reaction vol.11, pp.3, 2020, https://doi.org/10.33961/jecst.2020.00822
  2. Recent Advances in Bio‐Templated Metallic Nanomaterial Synthesis and Electrocatalytic Applications vol.14, pp.3, 2021, https://doi.org/10.1002/cssc.202002532