• Title/Summary/Keyword: Soil reaction

Search Result 830, Processing Time 0.028 seconds

A Numerical Analysis of Soil-Pile Systems for Pile Load Tests at a Korean Site (국내 말뚝재하시험에 대한 지반-말뚝계의 수치해석)

  • Oh, Se-Boong;Ahn, Tae-Kyong;Choi, Yong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.94-104
    • /
    • 1999
  • In order to evaluate the performance of axially of laterally loaded piles experimentaly, pile load tests can be carried out at the site Otherwise stress analyses or subgrade reaction analyses can solve the problem. In this study, stress analysis using FLAC code and subgrade reaction analyses using load transfer curves recommended by API(1993) were performed consistently on the basis of a result of site investigations, and the result of analyses was compared with the measured. As a result the behavior of pile heads was analyzed accurately for both axially and laterally loaded tests. Furthermore axially transferred loads were calculated appropriately for the measured and axial loads were transferred mainly mainly by the frictional resistance rather than by the tip resistance. Consequently, it can be commented that both analysis methods of soil-pile systems are applicable at teh objective site and that solutions may be more accurate if material properties from the site investigation are more explicit.

  • PDF

Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method

  • Orbanich, C.J.;Ortega, N.F.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.169-182
    • /
    • 2013
  • The mechanical behavior of rectangular foundation plates with perimetric beams and internal stiffening beams of the plate is herein analyzed, taking the foundation design into account. A series of dimensionless parameters related to the geometry of the studied elements were defined. In order to generalize the problem statement, an initial settlements was considered. A numeric procedure was developed for the resolution by means of the Finite Differences Method that takes into account the stiffness of the plate, the perimetric and internal plate beams and the soil reaction module. Iterative algorithms were employed which, for each of the analyzed cases, made it possible to find displacements and reaction percentages taken by the plate and those that discharge directly into the perimetric beams, practically without affecting the plate. To enhance its mechanical behavior the internal stiffening beams were prestressed and the results obtained with and without prestressing were compared. This analysis was made considering the load conditions and the soil reaction module constant.

Enhanced Bioslurping System for Remediation of Petroleum Contaminated Soils (Enhanced Bioslurping system을 이용한 유류오염 토양의 복원)

  • Kim Dae-Eun;Seo Seung-Won;Kim Min-Kyoung;Kong Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Bioslurping combines the three remedial approaches of bioventing, vacuum-enhanced free-product recovery, and soil vapor extraction. Bioslurping is less effective in tight (low-permeability) soils. The greatest limitation to air permeability is excessive soil moisture. Optimum soil moisture is very soil-specific. Too much moisture can reduce air permeability of the soil and decrease its oxygen transfer capability. Too little moisture will inhibit microbial activity. So Modified Fenton reaction as chemical treatment which can overcome the weakness of Bioslurping was experimented for simultaneous treatment. Although the diesel removal efficiency of SVE process increased in proportion to applied vacuum pressure, SVE process was difficulty to remediation quickly semi- or non-volatile compounds absorbed soil strongly. And SVE process had variation of efficiency with distance from the extraction well and depth a air flow form of hemisphere centering around the well. Below 0.1 % hydrogen peroxide shows the potential of using hydrogen peroxide as oxygen source but the co-oxidation of chemical and biological treatment was impossible because of the low efficiency of Modified Fenton reaction at 0.1 % (wt) hydrogen peroxide. NTA was more efficiency than EDTA as chelating agent and diesel removal efficiency of Modified Fenton reaction increased in proportion to hydrogen peroxide concentration. Hexadecane as typical aliphatic compound was removed less than Toluene as aromatic compound because of its structural stability in Modified Fenton reaction. What minimum 10% hydrogen peroxide concentration has good remediation efficiency of diesel contaminated groundwater may show the potential use of Modified Fenton reaction after bioslurping treatment.

비소 및 중금속 오염 토양의 파일럿 토양 세척 연구

  • 고일원;이광표;이철효;김경웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.239-242
    • /
    • 2004
  • Pilot-scale soil washing facility was developed and operation condition was determined in order to remediate a soil contaminated with As, Ni and Zn. Soil washing facility is composed of soil particle separation, soil washing and wastewater treatment process. Both oxyanionic As and cationic Ni and Zn were effciently removed using HCl rather 0than H$_2$SO$_4$ and H$_2$PO$_4$. This is why oxyanion and cation metals can be extracted simultaneously from the contaminated soil in acidic solution. Further, the contaminated soils include calcite and then demand much acidity, that is consumption of acid solution. Fine particles are enriched with contaminants, and coarse particles are removed effectively rather than fine particles. As, Ni and Zn are strongly associated with minerals, and then the residence time should be increased for a reaction with washing solution.

  • PDF

Probabilistic Solution to Stochastic Soil Water Balance Equation using Cumulant Expansion Theory (Cumulant 급수이론을 이용한 추계학적 토양 물수지 방정식의 확률 해)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • Based on the study of soil water dynamics, this study is to suggest an advanced stochastic soil water model for future study for drought application. One distinguishable remark of this study is the derivation of soil water dynamic controling equation for 3-stage loss functions in order to understand the temporal behaviour of soil water with reaction to the precipitation. In terms of modeling, a model with rather simpler structure can be applied to regenerate the key characteristics of soil water behavior, and especially the probabilistic solution of the derived soil water dynamic equation can be helpful to provide better and clearer understanding of soil water behavior. Moreover, this study will be the future cornerstone of applying to more realistic phenomenon such as drought management.

Study on Subcritical Water Degradation of RDX Contaminated Soil in Batch and Dynamic Mode (배치형과 연속흐름형에 의한 토양 중 RDX의 아임계 분해특성 비교연구)

  • Choi, Jae-Heon;Lee, Hwan;Lee, Cheol-Hyo;Kim, Ju-Yup;Park, Jeong-Hun;Jo, Young-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.95-102
    • /
    • 2015
  • The purpose of this study is to compare the degradation characteristics by subcritical water of RDX contaminated soil using batch mode and dynamic mode devices. First, upon application of RDX contaminated soil, RDX treatment efficiency was increased with increasing the temperature in both modes. At 150℃, the treatment efficiency was 99.9%. RDX degradation efficiency got higher with lower ratio of solid to liquid. However, the treatment efficiency in the dynamic mode tended to be decreased at a certain ratio of solid to liquid or lower. The treatment efficiency was increased when it took longer time for the reactions in both modes. As the results of analysis on concentration of treated water after subcritical water degradation, the RDX recovery rate of dynamic and batch modes at 150℃ was 10.5% and 1.5%, respectively. However, both modes showed very similar recovery rates at 175℃ or higher. RDX degradation products were analyzed in treated water after it was treated with subcritical water. According to the results, RDX degradation mechanism was mostly oxidation reaction and reduction reaction was partially involved. Therefore, it suggested that most of RDX in soil was degraded by oxidation of subcritical water upon extraction. According to this result, it was found that both batch and dynamic modes were very effectively applied in the treatment of explosive contaminated soil.

Separation Between Soil Particles and Magnetic Beads by Magnetic Force (자력을 이용한 토양입자와 마이크로자성체의 분리 연구)

  • So, Hyung-Suk;Shin, Hyun-Chul;Yoo, Yeong-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.76-80
    • /
    • 2005
  • It was evaluated whether magnetic beads able to add the functionality of environment purification can be employed in processing soil pollutants. In this study, the micro scale magnetic beads containing carboxyl groups were mixed with water and the soil $(<0.025{\cal}mm) filtered through a sieve, and then it was agitated before isolating the magnetic substances by the use of outer magnetic force. The factors considered at this step were the ratio of soil to magnetic beads, ratio of soil to water, size of the tube where the reaction occur, and intensity of the magnetic force. From the separation experiment between soil and magnetic beads, it was concluded that the magnetic beads and water quantity have an impact on the degree of separation, yet the size of the tube and magnetic force does not have a considerable effect upon that in this small-scaled experiment. Through this experiment, the reaction conditions were optimized to achieve $90\~100\%$ of separation. Therefore, it was concluded that when the functionalized magnetic beads is introduced to environmental processing, it is able to be adopted to the soil processing as well as the water processing.

An Analysis of the Relationship of Soil Factors to the Height Growth of Pinus densiflora within the Young Natural Stands in Central Korea (중부한국의 자연생 소나무의 연 신장성장율에 영향을 미치는 토양요인들에 대한 다요인 분석)

  • 오계칠
    • Journal of Plant Biology
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 1972
  • To study on the annual height growth of Pinus densiflora within natural pine stands in central Korea, twenty two pure closed Pinus densiflora stands were selected subjectively in the west-central region of Korea. In each stand twenty trees were chosen randomly. For each tree, abotu ten to fifteen measurements of internodal lengths were made from leader top to trunk base. A total of one hundred thirty four soil samples was collected. Each soil sample was bulked with three subsamples. The ranges of the growth measurements per stand, per tree and per observation were 14.9-35.4cm, 9.0cm-54.4cm and 2.4cm-69.0cm respectively. The total mean value was 23.5cm. The Student-Newman-Keul's tests for the multiple comparison among the mean values of the height growth per stand were very highly significant. The resutls of the analysis of variance of the height growth data for the selected fifteen stands among the twenty two stands indicate that sampling efficiency might be increased to 744% if measurement of the growth were made on fifteen trees per stand from twenty stands instead of twenty trees per stand from fifteen stands. The annual height growths of Pinus densiflora and Pinus koraiensis for the period from 1960 to 1968 were 21.74$\pm$5.29cm (10) and 20.56$\pm$5.59cm (10) respectively. The total means of easily-soluble phosphorus, total nitrogen, loss on ignition and pH for the soil samples were 2.8 ppm, 0.09%, 5.4% and 4.7 respectively. The ranges of those amounts were 18.7-1.7ppm, 0.17-0.05%, 11.6%-3.1%, 3.9-5.1 respectively. The relationship of the annual height growth of P. densiflora to soil was studied in terms of standard partial multiple regression. Among soil properties such as non-capillary pore space, capillary pore space, maximum field capacity, loss on ignition, soil reaction, total nitrogen and easily-soluble phosphoros investigated, the easily soluble phosphorus in one analysis and loss on ignition and soil reaction in the other analysis seem to have significant positive influence on the annual height growth.

  • PDF

Changes of Performance of Soil-Cement Barrier due to Migration of Acids (산 이동에 따른 심층혼합기둥체 차수벽의 성능변화)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.189-196
    • /
    • 2003
  • Soil-cement column is often used as a contaminant barrier. This study presents the results of experimental study performed to investigate the changes of properties of soil-cement column under the attack of acids. Sulfuric nitric, and ascetic acid were used as contaminants. Specimen were made of clayey and sandy soils with addition of cement and water Permeability of soil-cement decreased with time during permeability test. When significant amount of acid percolated the specimen, permeability increased and compressive strength decreased due to the dissolution and leaching of cement and its chemical reaction compounds. Sulfuric and nitric acid were more effective than ascetic acid in deteriorating soil-cement column. Amount of acid required to lower the pH of soil cement below 12 was calculated from the results of permeability tests. This leads to a conclusion that, under the conditions employed in this study, the chemical stability of soil-cement column could be maintained against acid attack for longer than generally accepted lifetime of contaminant barriers.

  • PDF

Assessment of the Changes in the Microbial Community in Alkaline Soils using Biolog Ecoplate and DGGE (Biolog Ecoplate와 DGGE 방법을 이용한 알칼리화 토양의 미생물군집 변화 평가)

  • Lee, Eun Young;Hong, Sun Hwa
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.275-281
    • /
    • 2013
  • Soil microbial community analysis of farmland soil sprayed with lye in order to use fertilizer in Nigeria was performed. As a control, two kinds of soils not sprayed with lye, located in Eungo and Lagos with general practice in agriculture was selected. Soil sprayed with lye was pH 8.25 through alkalization reaction, while the other soil samples were pH 6.22 and 5.94. Substrate utilization and species diversity index of soil sprayed with lye were low than that of the other soils with the analysis of Biolog ecoplate. As a result of principal component analysis, the relationship between three samples was low. Microbial community analysis was performed by DGGE and most of them were soil uncultured bacterium. Especially, Uncultured Acidobacteria and Uncultured Methylocystis sp., which had been isolated from the rhizosphere of soybean grown in that site were discovered in the soil sprayed with lye.