• Title/Summary/Keyword: Soil physical characteristics

Search Result 483, Processing Time 0.03 seconds

Shear Behavioral Characteristics of Weathered Residual Soil for the Change Water Content (풍화잔적토의 함수비 변화에 따른 전단거동특성)

  • Yoo, Nam-Jae;Kim, Young-Gil;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.119-124
    • /
    • 1997
  • This thesis is an experimental research of shear behavioral characteristics and shear behavioral coefficient of weathered residual soil which is mostly contained in soil of Korea. Using the weathered residual soil from mountain near Kangwon National University, this experimental research were contained the physical properties of sample in term of the basic test method such as specific gravity, plastic and liquid limit, grain-size distribution, density and water content. Experimental results obtained from direct shear test sand triaxial compression tests show that according to step loading, linear strain and linear stress increase continually and angle of internal friction decreases just little according to incresing of water content in case of ignoring the cohesion, and angle of internal friction appears the maximum angle near a optimum moisture content in case of considering the cohesion.

  • PDF

Strength Characteristics of Stabilized Dredged soil and Correlation with Index Properties

  • Kim, Yun-Tae;Do, Thanh-Hai;Kang, Hyo-Shup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.489-494
    • /
    • 2010
  • A geo-composite soil (GCS) is a stabilized mixture of bottom ash, cement and dredged soil. Various samples with different mass ratios of mixtures were tested under curing time of 7 and 28 days to investigate physical properties and compressive strength. This paper focused on the effect of bottom ash on the strength characteristics of Busan marine dredged soil. Cement has been added as an additive constituent to enhance self-hardening of the blended mixture. The unconfined compressive strength of GCS increases with an increase in curing time due to pozzolanic reaction of the bottom ash. The strength after 28 days of curing is found to be approximately 1.3 to 2.0 times the strength after 7 days of curing, regardless of mixture conditions. The secant modulus of GCS is in the range of 55 to 134 times the unconfined compressive strength. The correlation of unconfined compressive strength with bottom ash content and initial void ratio are suggested.

  • PDF

Engineering characteristics of reinforced solidified roadbed (친환경 도로조성을 위한 보강형 고화도로노반의 공학적 특성)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.906-909
    • /
    • 2005
  • The purpose of this paper is to study on the construction of roadbed with environmental friendly soil amendment agent and reinforced fiber. The special amendment agent and fiber used in this study has a function of soil-cement-agent solidification and reinforcement. A series of laboratory experiments including unconfined compressive strength, tensile strength, compaction test were carried out to investigate the physical and mechanical characteristics of roadbed treated by solidifying agent and fiber. The results of this research showed that the roadbed using poor soil could be efficiently constructed by treatment of this amendment agent and fiber.

  • PDF

Characteristics of Compaction and Stregth for Synthetic Fiber Reinforced Soils (섬유 보강토의 다짐 및 강도 특성)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.93-98
    • /
    • 1999
  • The results of an experimental investigation on the characteristics of compaction and compressive strength of polypropylene fiber reinforced soil are presented in this paper. This study has been performed to obtain the physical properties of PFRS(polypropylene fiber reinforced soil) such as strain-stress relationships, OMC(optimum moisture contents) and ${\gamma}$dmax (maximum dry unit weight), with four different contents (i.e., 0.1%, 0.3%, 0.5% and 1.0% weights ) of mono-filament and fibrillated polypropylene fibers. From the compaction test results, it is found that OMC increased with the contents ratio of fiber, but ${\gamma}$dmax decreased. It means that the improvement of the workability and the reduction of the weight of embankment structures by the asddtion of the polypropylene fiber. And, from the compression test results, it is found that the additon of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil is more effective than the mono-filament polypropylene fiber reinforced soil.

  • PDF

Construction of Environmentally Friendly Roadbed by Reinforecing Type Soil Solidification Agent (보강형 고화제를 이용한 친환경 도로노반조성 방안)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.667-671
    • /
    • 2004
  • The purpose of this paper is to study on the construction of environmentally friendly roadbed by reinforcing type soil solidification agent. The soil amendment agent used in this study is friendly to the environment, and has a function of soil-cement-agent solidification. The soil amendment agent was admixed with reinforced fiber material for enhancement of strength and durability of roadbed. The project of trial field test of roadbed construction with special reinforcing soil treatment agent was performed in Gyunggido on December 2003. A series of field and laboratory experiments including unconfined compressive strength, permeability were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this reinforced solidifying agent. The results of this research showed that the roadbed using normal and poor soil could be efficiently constructed by treatment of this reinforcing type solidification agent admixed with fiber material.

  • PDF

Water Storage Characteristics of Surface Soil by the Different Forest Floor Conditions(II) (지피상태(地被狀態)에 따른 임지(林地)의 수저유(水貯留) 특성(特性)(II))

  • Lee, Heon Ho;Lee, Chang Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.473-479
    • /
    • 1994
  • This study was carried out to get the basic data for obtaining water resources continuously. Water storage of forest land was estimated by effective water storage based on classifying soil pore. The results were summarized as follows ; 1. Percentage of coarse pores were in the order : Forest>Bare land>Grasses. As soil depth increased, total pores, coarse pores, and maximum water content were decreased, while fine pores increased. 2. Soil pore percentage and physical properties of surface layer(0~20cm) were significantly different among forest floor conditions. However, there were no difference in soil pore percentage and physical properties in 20~40cm and 40~60cm according to forest floor conditions. In the same plot, on the other hand, soil pore percentage and physical properties were significantly different between surface layer(0~20cm) and 20~40cm, but there were no differences between 20~40cm and 40~60cm. 3. Effective water storage was highly correlated with coarse pore in all plots. 4. The model for water storage capacity of each forest floor condition expressed by effective water storage was produced using coarse pores and soil depth.

  • PDF

Soil Characteristics in Fagus multinervis Subcommunities at Songinbong Area of Ullungdo (울릉도 성인봉 주변 너도밤나무 하위군락별 토양 특성)

  • Park, Kwan-Soo;Song, Ho-Kyung;Lee, Sun
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.3
    • /
    • pp.299-305
    • /
    • 2000
  • To determine the effects of underlayer vegetation on soil properties, the profiles, physical, and chemical properties of soil were investigated upon Fagus multinervis -Rumohra standishii, Fagus multinervis - typical, and Fagus multinervis -Sasa kurilensis subcommunities that was growing at Songinbong area of Ullungdo. There were little differences in soil profile properties among the three subcommunities. Also, there were little differences in physical and chemical properties of soil among the three subcommunities, except exchangeable Ca concentration in 0-10 cm soil depth. However, the soils of the study area in 0-10 cm soil depth comprised high organic matter and total N concentration as in an average value of 21.6% and 0.74%, respectively. Also, the soil showed very low bulk density and pH as in an average value of 0.43 g/㎤ and 4.4 in 0-10 cm soil depth, respectively. Due to the high soil organic matter and total N concentrations and the low bulk density and pH, the soil properties of Songinbong area are different from those of other forest in Korea.

  • PDF

Characteristics of a Forest Soil on Pine Mushroom Habitat Located in Ponghwa, Kyungbuk and Gansung, Kangwon. 1. Physical and Chemical Properties of O Horizon and Surface Soil (경북 봉화와 강원도 간성 지역의 송이자생지 산림토양의 특성 - 1. O층과 토양지표층의 이화학적 특성)

  • Chung, Doug-Young;Lee, Kyo-S.;Lee, Jong-Shin;Youn, Young-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.206-213
    • /
    • 2008
  • We observed the physical and chemical properties of a soil on pine mushroom picking areas where were located in the most upper and lower parts showing a comparative climatic characteristics in Korea. The slope gradients within the investigation areas which were divided into 100 quadrates of $1m^2$ ranged from $5.7{\sim}8.6{\beta}$ to $24{\sim}22.7{\beta}$ (left to right) and $4.5{\sim}6.8{\beta}$ to $13.5{\sim}17.8{\beta}$ (top to bottom) for Ponghwa and Gansung, respectively. The amount of clay and thickness of organic matter were significantly decreased with increasing slope gradient, resulting in decrease of the soil moisture content around a fairly ring-colony of Tricholoma matsutake which was observed under the relatively thicker organic matter layer beyond 3 cm depth. Soil pHswere weak acid and average EC was $0.44dS\;m^{-1}$ in both areas. The cations were in the order of Fe K > Na > Mg > Ca and Fe > K > Na > Ca > Mg for the upper(Gansung) and the lower (Ponghwa) part. And the amount of Fe was approximately $80dS\;m^{-1}$ or greater in the pine mushroom picking soil. From this, we could assume that the growth of the pine mushroom was closely related not only with iron but also soil moisture content.

Characteristics of S-wave and P-wave velocities in Gyeongju - Pohang regions of South Korea: Correlation analysis with strength and modulus of rocks and N values of soils

  • Min-Ji Kim;Tae-Min Oh;Dong-Woo Ryu
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.577-590
    • /
    • 2024
  • With increasing demand for nuclear power generation, nuclear structures are being planned and constructed worldwide. A grave safety concern is that these structures are sensitive to large-magnitude shaking, e.g., during earthquakes. Seismic response analysis, which requires P- and S-wave velocities, is a key element in nuclear structure design. Accordingly, it is important to determine the P- and S-wave velocities in the Gyeongju and Pohang regions of South Korea, which are home to nuclear power plants and have a history of seismic activity. P- and S-wave velocities can be obtained indirectly through a correlation with physical properties (e.g., N values, Young's modulus, and uniaxial compressive strength), and researchers worldwide have proposed regression equations. However, the Gyeongju and Pohang regions of Korea have not been considered in previous studies. Therefore, a database was constructed for these regions. The database includes physical properties such as N values and P- and S-wave velocities of the soil layer, as well as the uniaxial compressive strength, Young's modulus, and P- and S-wave velocities of the bedrock layer. Using the constructed database, the geological characteristics and distribution of physical properties of the study region were analyzed. Furthermore, models for predicting P- and S-wave velocities were developed for soil and bedrock layers in the Gyeongju and Pohang regions. In particular, the model for predicting the S-wave velocity for the soil layers was compared with models from previous studies, and the results indicated its effectiveness in predicting the S-wave velocity for the soil layers in the Gyeongju and Pohang regions using the N values. The proposed models for predicting P- and S-wave velocities will contribute to predicting the damage caused by earthquakes.

Physcial and Mechanical Characteristics of Soft Clay in Nam-Ak New City (남악신도시 연약점토의 물리적 특성 및 역학적 특성 연구)

  • 김종렬;배성웅;이치열
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.271-278
    • /
    • 2002
  • Soft ground has complex features in mechanic character of ground. Some problems about the settlement and transformation occur if the ground strength is comparatively weak and the depth is large. Therefore, we should consider physical and mechanical characters for safe, economical design and management. As the result of the course, we can compare them with those of field then solve the limitations which were came from the complex character of the soft ground. I have considered the soil's physical character (specific gravity of soil particles, moisture content, grain-size analysis etc) and mechanical character (direct shear test, consolidation, triaxial shear test etc), and then make out a linear interpolation by regression using the two, those and connection of the depth

  • PDF