• Title/Summary/Keyword: Soil phosphorus

Search Result 824, Processing Time 0.025 seconds

Total Phosphorus Removal in Cattail Wetland Purifying Effluent from a Night Soil Treatment Plant during Its Initial Operation (분뇨처리장 방류수를 정화하는 부들습지의 초기운영 단계에서 총인의 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • Total phosphorus(TP) removal was examined in a surface-flow wetland constructed in April 2003 during its initial operating stage from June to November 2003. Its dimensions were 87mL by 14mW. It was a part of a four-wetland-cell treatment system constructed near the Kohung Estuarine Lake located in the southern part of Korea. Effluent from a night soil treatment plant was discharged into the wetland and purified effluent from the wetland was discharged into Sinyang Stream flowing into the Lake. Cattails(Typha angustifolia ) from natural wetlands were cut at about 40 cm height and transplanted into the wetland. An average of 25.0$m^3$/day of effluent flowed from the plant into the wetland. Water depth was maintained about 0.2m and hydraulic detention time was about 5.2 days. Average heights of the cattail stems in June and October 2003 were 47.2 and 164.6cm, respectively. The average number of stems was 10.2 stems/$m^2$ in June 2003 and 18.8 stems/$m^2$ in October 2003. Average temperature of influent and effluent ranged 23.4 and $24.2^{\circ}C$, respectively. The average TP concentrations of influent and effluent were about 1.31, 0.50mg/L, respectively. TP loading rate of influent into the wetland averaged 26.81mg/$m^2$, day and average TP loading rate of effluent was 10.04mg/$m^2$, day. Monthly average TP removal by the wetland during the warm growing season of cattails(June to September) ranged 16.28~19.57mg/$m^2$, day and during the cold senescent period (October to November) ranged 12.62~13.90mg/$m^2$, day. TP removal in the wetland continued during the cold winter months and was primarily done by sedimentation and precipitation of phosphorus rather than phosphorus absorption by cattails and microorganisms.

Effects of Nitrogen Sources on Sugars and Organic Acids of Soybean Cultivars Different in Phosphorus Sensitivity (인산감수성(燐酸感受性)이 다른 대두품종간(大豆品種間) 유기산(有機酸) 및 당(糖)에 대(對)한 질소원(窒素源)의 영향(影響))

  • Park, Hoon;Stutte, Charles A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.2
    • /
    • pp.85-92
    • /
    • 1977
  • The six soybean cultivars (Lee, Hill, Harosoy, Clark-63 Chippewa and R56-49) different in phosphorus sensitivity were cultured with $NH_4-N$, $NO_3-N$ or urea-N under water culture condition. Free sugars and organic chrematogram. Three peaks (unknown x, y and sucrose) were appeared as considerable main peaks. The X compound appeared as trace in the nitrate fed plant while unexpectedly high in ammonium or urea fed plant. The Y compound tend to decrase in urea fed plant. Sucrose was trace in ammonium fed plant but it was greater in urea onethan in nitrate one. The X was assumed a four carbon sugar acid derived from erythrose or a ring compound derived from purine or pyrimidine. While Y was assumed a hexose derived from glycolysis path. Since Y/x ratio is a good index of phosphorus sensitivity (inve rserelation) these compounds appears keycompounds to elucidate phosphorus sensitivity and ammonium toxicity.

  • PDF

Characterizing soils and the enduring nature of land uses around the Lake Chamo Basin in South-West Ethiopia

  • Zebire, Degife Asefa;Ayele, Tuma;Ayana, Mekonen
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.129-160
    • /
    • 2019
  • Background: Characterizing and describing soils and land use and make a suggestion for sustainable utilization of land resources in the Ethiopian Rift valley flat plain areas of Lake Chamo Sub-Basin (CSB) are essential. Objectives: To (1) characterize soils of experimental area according to World Reference Base Legend and assess the nature and extent of salinity problems; (2) characterize land use systems and their role in soil properties; and (3) identify best land use practices used for both environmental management and improve agricultural productivity. Methods: Twelve randomly collected soil samples were prepared from the above land uses into 120 composites and analyzed. Results: Organic carbon (OC) and total nitrogen (TN) were varied along different land uses and depleted from the surface soils. The soil units include Chernozems (41.67%), Kastanozems (25%), Solonchaks (16.67%), and Cambisols (16.67%). The identified land uses are annual crops (AA), perennial crops (PA), and natural forest (NF). Generally, organic carbon, total nitrogen, percentage base saturation (PBS), exchangeable (potassium, calcium, and magnesium), available phosphorus (P2O5), manganese, copper, and iron contents were decreased in cultivated soils. Soil salinity problem was observed in annuals. Annuals have less nutrient content compared to perennials in irrigated agriculture while it is greater in annuals under rainfed. Clay, total nitrogen, available phosphorus, and available potassium (K2O) contents were correlated positively and highly significantly with organic carbon and electrical conductivity. Conclusion: Management practices that improve soil quality should be integrated with leguminous crops when the land is used for annual crops production.

Comparison of Livestock Manure Compost and Chemical Fertilizer Application in Distribution of P Fractions at Reclaimed Land Soils

  • Moon, Tae-Il;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.327-334
    • /
    • 2016
  • In order to compare phosphorus (P) behavior of livestock manure compost (LMC) and chemical fertilizer (CF) applied to the sea-reclaimed land soils, incubation experiments were conducted for five weeks. Four soils differing textural classes, sandy loam and clay loam, and electric conductivity (EC) value, high and low, were applied with CF and LMC. LMC was applied at the level of 0, 1, 2, and 3% on the soil weight basis and CF was applied at the same levels of P as LMC. The results showed that increase of P application rate of CF and LMC led to linearly increase available $P_2O_5$ and $0.01M\;CaCl_2$ extractable P contents regardless of soil texture and EC. However, 0.01M $CaCl_2$ extractable P from soil applied with CF was significantly higher than with LMC. Correlation analysis between $0.01M-CaCl_2$ extractable P and fractionated P by different extraction methods showed that $0.01M-CaCl_2$ extractable P positively correlated with KCl-P (soluble and exchangeable P) and HCl-P (Ca and Mg bound P). However, NaOH-P (Fe and Al bound P and organic P) and residual P was adverse. The amount of NaOH-P significantly influenced to the amount of 0.01M $CaCl_2$ extractable P of CF and LMC in the soils. The application of LMC at sandy loam soil could be carried out in the consideration of nutrient leaching and crop uptake.

Influence of Soil and Forage Minerals on Buffalo (Bubalus bubalis) Parturient Haemoglobinuria

  • Akhtar, M.Z.;Khan, A.;Sarwar, M.;Javaid, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.393-398
    • /
    • 2007
  • The present study was carried out to investigate the serum minerals profile in buffaloes (Bubalus bubalis) suffering from parturient haemoglobinuria (PHU) along with minerals profile of soils and fodders from the disease prone areas and their interrelationships. Serum samples were collected from 60 each of healthy and PHU affected buffaloes randomly selected from field cases. Serum samples were collected from each animal. Fifty composite soil samples were collected where PHU was prevalent. Fifty samples of fodders including leaves and stems being fed to the diseased buffaloes were collected. The difference in the levels of calcium and potassium between upper and lower soil surface of disease prone areas under study were statistically non-significant. The mean values of phosphorous, copper, iron, selenium and molybdenum in upper soil surface were significantly (p<0.05) higher than in lower soil surface. None of the fodders offered to the diseased animals met the dietary requirements of phosphorus and copper whereas none of the fodders was deficient in potassium, iron and selenium rather were having excess of potassium, iron and selenium. The concentration of calcium was adequate in lucerne, berseem, sarson and sorghum, while maize, sugarcane and wheat straw did not meet the required levels for dairy animals. Molybdenum contents in all fodders were adequate to meet the dietary requirements of the dairy buffaloes. Serum phosphorus, copper and selenium were significantly (p<0.001) lower whereas potassium, iron and molybdenum in buffaloes suffering from PHU were significantly (p<0.001) higher than in healthy buffaloes. It was concluded that phosphorous deficient soils play a major role by transferring this deficiency to plants and ultimately reaching to animals where hypophosphataemia is a consistent finding.

Characteristics of By-product Ochre from Acid Mine Drainage (AMD) Treatment and Its Potential Use (산성광산배수 (AMD) 처리 부산물 ochre의 특성과 활용)

  • Jeong, Jung-Hwan;Kim, Ho-Jin;Kim, Young-Nam;Nam, Kwang-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.304-314
    • /
    • 2010
  • This study was carried out to find out potential use of ochre as an agent to reduce phosphorus content in water. Ochre is a by-product from treatment of acid mine drainage (AMD) which is composed mostly of $Fe_2O_3$, $Fe_2O_3{\cdot}H_2O$, $FeO{\cdot}OH$ and $Fe(OH)_3$. Three ochre samples (ochre-H, ochre-D and ochre-S) were collected from three treatment facilities in Gangwon province. Physico-chemical characteristics of three ochre samples including pH, electrical conductivity, total phosphorus, available phosphorus, particle size distribution were analyzed. Scanning electron microscopy (SEM) energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis were also carried out. In addition, experiments for phosphorus removal from water was performed. Calcium content of ochre-H was higher than that of ochre-D and ochre-S, whereas iron content of ochre-H was lower than that of ochre-D and ochre-S. All the phosphorus in water up to maximum 191,411 mg $kg^{-1}$ per unit mass of ochre was removed with ochre-H. Ochre has immense potential as an agent to reduce phosphorus content in water.

Varietal Differences in Physiological Characteristics Focussed on N. P. K and Si Uptake under Cold Temperature at Seedling Stage (묘대기(苗垈期) 수도품종별(水稻品種別) N, P, K, Si 함량(含量)에 미치는 저온처리와 질소(窒素) 및 인산증시의 영향(影響))

  • Seok, Soon-Jong;Ryu, In-Soo;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.183-187
    • /
    • 1983
  • The investigate the varietal differences is physiological characteristics related to nutrient uptake and response to nitrogen and phosphorus, a pot experiment was conducted in a temperature control chamber. Three varieties with different cold resistances were grown under normal ($23^{\circ}-25^{\circ}C$) and cold ($15^{\circ}C$) conditions with three nitrogen and phosphorus application levels. The cold temperature was treated for twelve days after thirty days from seeding. The results were summarized as follows: 1. Dry weight and nutrient contents were reduced in cold temperature treatment compared with control and the reduced ratio by low temperature were in order of dry weight 29.4% $P_2O_5$ 21.3%, N 15.3%, $K_2O$ 10.1%, $SiO_2$ 8.7%. 2. The reduced ratio of phosphorus contents of each varieties to normal condition were 13.5% in resistant, 19.5% in medium, 31.1% in susceptible variety, respectively. 3. The phosphorus and silicate contents of plants showed a good relationship with varietal differences in cold resistance but nitrogen and potassium didn't showed, therefore, phosphorus and silicate contents might be used as the index for physiological characteristics related with cold resistance. 4. Phosphorus content slightly increased with nitrogen application but silicate content decreased. Upon phosphorus application, nitrogen and silicate contents were increased.

  • PDF

Utilization and Quantitative Analysis Method of Available Phosphorus in Soils for Nak-Dong Rice (낙동(洛東)벼의 토양중(土壤中) 유효인산(有效燐酸) 이용(利用)과 그 정량방법(定量方法))

  • Kim, Yong Joo;Kim, Jin Ho;Park, Woo Churl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.59-67
    • /
    • 1987
  • The pot experiment was conducted using soils with varying contents of available phosphorus to select the reasonable method for determination of the available phosphorus content in soils for Nak-Dong rice cultivation. On a basis of the responses to the phosphorus tertilizer applied, the linear correlation coefficients by Bray No.1, Bray No.2, Lancaster, North Carolina and Olsen methods were 0.887, 0.868, 0.879, 0.952 and 0.911 for Nak-Dong rice yield, respectively. Of the methods tested, North Carolina method was the most suitable for determining, the phosphorus content in soils for Nak-Dong rice. The phosphorus application promoted the growth of Nak-Dong rice in pots for culm, tiller number, available stem and grain number per ear. Based on this experiment it could be presumed that the recommanded quantity of phosphorus fertilizer should attain to 5kg per 10a to promote the growth of Nak-Dong rice in A-soil and 10kg per 10a in B -, C - and D-soil. The results from the pot experiment will be somewhat different from those from the field experiment. Therefore, field experiment should be carried out for further information.

  • PDF

인산염을 이용한 납오염 토양 고정화 반응의 가속화

  • 이의상;이상봉;이인원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.201-204
    • /
    • 2004
  • Immobilization is seen as a promising technology for lead remediation. In a laboratory experiment, immobilization of lead with soluble P was tested as a function of reaction time and P concentration. The P treated with an acidic solution to enhance heavy metal immobilization was worked into the soil, and within 7 days, lead was stabilized. Different molar ratios of soluble phosphates (super-phosphate and KH$_2$PO$_4$) would be considerably effective to accelerate the formation of highly insoluble minerals due to the lack of leachable Pb in the contaminated soil. Although it was demonstrated that the addition of soluble phosphates with an acidic solution significantly reduced available lead in soil up to over 95%, remaining phosphorus in soil matrix might cause a possible groundwater eutrophication in the near future.

  • PDF

Enhanced ion-exchange properties of clinoptilolite to reduce the leaching of nitrate in soil

  • Kabuba, John
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • The leaching of nitrate from soil increases the concentration of elements, such as nitrogen, phosphorus, and potassium, in water, causing eutrophication. In this study, the feasibility of using clinoptilolite as an ion-exchange material to reduce nitrate leaching in soil was investigated. Soil samples were collected from three soil depths (0 - 30, 30 - 90, and 90 - 120 cm), and their sorption capacity was determined using batch experiments. The effects of contact time, initial concentration, adsorbent dosage, pH, and temperature on the removal of NO3- were investigated. The results showed that an initial concentration of 25 mg L-1, a contact time of 120 min, an adsorbent dosage of 5.0 g/100 mL, a pH of 3, and a temperature of 30 ℃ are favorable conditions. The kinetic results corresponded well with a pseudo-second-order rate equation. Intra-particle diffusion also played a significant role in the initial stage of the adsorption process. Thermodynamic studies revealed that the adsorption process is spontaneous, random, and endothermic. The results suggest that a modification of clinoptilolite effectively reduces the leaching of nitrate in soil.