• Title/Summary/Keyword: Soil and Groundwater

Search Result 3,604, Processing Time 0.025 seconds

현장 토양 투수계수 측정: 방법 및 사례

  • 이진용;이명재;최예권;김용철;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.188-190
    • /
    • 2001
  • This study presents procedures and analysis methods for well known two field soil permeability tests, disc-tension infiltrometer and Guelph permeameter. Some case tests are demonstrated and then some problems involving the tests were clarified. This study may be helpful for practical field hydrogeologists.

  • PDF

Modeling approach in mapping groundwater vulnerability

  • Im Jeong-Won;Bae Gwang-Ok;Lee Gang-Geun;Seok Hui-Jun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.304-307
    • /
    • 2005
  • A numerical modelling method using a backward-in-time advection dispersion equation is introduced in assessing the vulnerability of groundwater to contaminants as an alternative to classical vulnerability mapping methods. The flux and resident concentration measurements are normalized by the total contaminants mass released to the system to provide the travel time probability density function and the location probability function. With the results one can predict the expected travel time of a contaminant from up stream location to a well and also the relative concentration of the contaminant at a well. More specific groundwater vulnerability can be mapped by these predicted measurements.

  • PDF

영가 철로 구성된 Flow-Through Column내에서 미생물 처리에 이한 폭발성 물질의 제거 향상

  • 오병택;윤제용
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.73-76
    • /
    • 2004
  • Rusted iron could retain activity to redox-sensitive pollutants in batch reactor. Flow-through columns packed with permeable reactive iron filings (Fe$^{0}$ ) between soil and sand layers were used to evaluate the applicability of bio-enhanced iron barriers to treat explosives-contaminated groundwater. One column was bioaugmented with municipal anaerobic sludge to evaluate the enhancement of biodegradation. Military contaminants (RDX, HMX, TNT, 2,4DNT, 2,6DNT), which coexist in soils at military sites, were completely removed in the bioaugmented Fe$^{0}$ layer after 8 months of operation. Overall, this research suggests that Fe$^{0}$ barriers can effectively clean up groundwater contaminated with military explosives, and that treatment efficiency can be enhanced by bioaugmentation.

  • PDF

불포화 자연토의 포화도에 따른 동전기 정화특성에 관한 실험적 연구

  • 김병일;김익현;김기년;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.302-305
    • /
    • 2003
  • The electrokinetic remediation tests for natural soil contaminated by lead are performed on unsaturated conditions, in which the degree of saturation is controlled through the changes in water content and the constant unit weight. At the degree of saturation of 70% the small acid range and electrical potential is developed. The changes in the water content are little above the saturation of 90%. But it is increased by 1.7 times at the degree of saturation of 70%. Finally, the efficiency of extraction is improved at 70% than 100%.

  • PDF

SVE 및 미생물제제를 이용한 유류 오염토양의 현장 복원

  • 박영준;염규진;김선미;이문현;박광진;이영신
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.103-106
    • /
    • 2003
  • This study was conducted to evaluate in-situ bioremediation ability of Bioil-D, microbial material for oil degradation, at a gas station that had been treated by SVE system. TPH concentrations and total contaminated soil volume were rapidly decreased after Bioil-D treatment. The performance of Bioil-D was also estimated based on the observation of microbial population at the soil samples and $CO_2$ concentration produced at the extraction wells. The field study showed a successful work of Bioil-D.

  • PDF

Future Direction on Policy and Technology Development for the Risk-based Contaminated Site Management (위해성 기반 오염부지관리를 위한 정책 및 기술개발 방향)

  • Cho, Myung-Hyun;Kim, Do-Hyung;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.48-62
    • /
    • 2017
  • Korea and other countries have made various efforts to preserve soil. During the past several decades, Korea has implemented various policies on soil conservation practices; however, those policies have often lacked consideration of human and ecosystem risk management. while other countries have practiced various policies closely related to risk-based management for contaminated sites. Therefore, there is a great need for a paradigm shift of policy to better manage contaminated sites in risk-based strategies, while applying different management plans for soil and groundwater. In addition, the new policies should be administered with provision to improve soil health and related functions in ecosystem. This study has reviewed the trend in relevant policies in Korea and foreign countries to suggest the future policy directions for contaminated site management in Korea. For better management of contaminated sites, coherent policy that could complement the law, system, and relevant technology is required.

지하수 수위 변동을 이용한 지하수 함양률 산정(전주-완주, 곡성 지역)

  • 조민조;하규철;이명재;이진용;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.217-220
    • /
    • 2002
  • To investigate the conditions of groundwater resources In Jeonju, Wanju, and Goksung, a basic groundwater survey was performed. From the survey, various useful informations such as groundwater use, waterlevel distribution, water chemistry were obtained. This study focused on the analysis of the water levels, which were automatically monitored with pressure transducers or manually measured. The monitorings were conducted for both shallow wells completed in alluvial aquifers and deep wells in bedrock aquifers. The automatically monitored waterlevels for alluvial aquifer were also used for estimation of recharge in the study area. This study presents results of the investigation.

  • PDF

The effect of nonlinear groundwater flow on DNAPL migration in a rough-walled single fracture

  • Ji Seong-Hun;Lee Hang-Bok;Yeo In-Uk;Lee Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.68-71
    • /
    • 2005
  • We conducted simple experiments to consider the influence of nonlinear groundwater flow on Trichloroethylene (TCE) as Dense Non-Aqueous Phase Liquid (DNAPL) migration in a rough walled single fracture. A glass replica of a granite sample containing a rough single fracture was made and experiments were conducted over a range of Re. Observations are compared to the results of TCE migration tests that were conducted in two parallel glass plates over the same range of Re. Results show nonlinear groundwater flow in a single fracture affect TCE migration path and residual saturation of TCE.

  • PDF

Transport Characteristic of Heavy Metals in Contaminated Soil (오염된 토양층내의 중금속 이동 특성)

  • 조재범;현재혁;정진홍;김원석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.236-239
    • /
    • 1998
  • This research was performed to check the transport characteristics of heavy metals in contaminated soil, that is, the influence of humic acid and phosphate on transport characteristics of heavy metals was studied. From the results of column mode experiments about heavy metal behavior, the order time to reach breakthrough and equilibrium was soil + humic acid( 20g ) > soil + humic acid ( 5 g ) > soil without Humic acid addition > soil+humic acid( 50g ). It is because the dissolved organic carbon content increased as the soil organic matter content increased. As the phosphate increased, so did the time to reach breakthrough and equilibrium. The order of time was soil + phosphate( 50 mg ) > soil + phosphate( 20 mg ) > soil . phosphate( 10 mg ) > soil without phosphate addition. It is because the phosphate ion worked as alkalinity donor and the calcium ion co-injected worked as the accelerator of coprecipitation of heavy metals.

  • PDF