• Title/Summary/Keyword: Soil Embankment

Search Result 353, Processing Time 0.033 seconds

Creep Deformation Characteristics of Weathered Granite Soil (화강풍화토의 creep 변형특성)

  • Park, Heung-Gyu;Kim, Yong-Ha;Paeng, Woo-Seon;Lee, Hae-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.43-52
    • /
    • 2007
  • This study analyzes the characteristics of creep deformation behavior of weathered granite soils used in road embankments. The creep strain under the unconfined compressive state demonstrated an excellent agreement with the theoretical analysis of the burgers substance. The elastic deformation showed a termination in its characteristics after a long-term period owing to the increase in applied loads. The primary creep strain was 0.0028 and concluded that the deformation completed within $3{\sim}5$ days after applying the loads. Also, the completing time of creep deformation in the embankment soils increased in proportion to the height of embankment soils. The secondary creep strain is about 50% of the primary creep strain.

The Influence of Soil Content on the Settlement Behavior of Gravel Embankement (토사 함량에 따른 자갈 성토재료의 침하특성 분석)

  • Suhyung Lee;Jiho Kim;Beomjun Kim;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.41-49
    • /
    • 2023
  • In this study, we analyzed the settlement characteristics of rockfill embankments mixed with soil by confirming the physical properties of soil materials mixed with silty materials and analyzing the compression characteristics of gravel materials according to the mixing ratio of soil materials. For this, we mixed silty materials into sandy soil to analyze the compression characteristics of soil materials, and we constructed a foundation by mixing various ratios of soil into rockfill materials with a particle distribution similar to that of river gravel, and conducted a one-dimensional compression experiment using a medium-sized chamber. As a result of the experiment, in the case of mixed soil materials, the Transition Fine Content (TFC) appeared in the range of 21~26% depending on the load condition, and in the case of rockfill materials mixed with soil, as the void filling ratio of soil in gravel samples increases, both total compression and creep compression decreases, but after a 50% mixing ratio, the settlement of amount increases again.

Centrifuge Model Tests on Characteristics in Forced Replacement Method for Soft Ocean Ground to Build Coastal Structures (해안구조물 축조를 위한 해양연약지반의 강제치환 특성에 관한 원심모형실험)

  • Park, Byung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.42-48
    • /
    • 2006
  • This paper shows theresults of centrifuge model experiments to investigate the behavior of a replacement method in dredged and reclaimed ground. For this experimental work, centrifuge model tests were carried out to investigate the behavior of a replacement method in soft clay ground. Basic soil property tests were performed to find the mechanical properties of clay soil sampled from the southern coast of Korea, which was used for the ground material in the centrifuge model tests. The reconstituted clay ground of the model was prepared by applying reconsolidntion pressure in a 1 g condition with a specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50 g. Replacement material of lead with a certain degree of angularity was used and placed until the settlement of the replacement material embankment reached a state of equilibrium. Vertical displacement of the replacement material was monitored during tests. The depth and shape of the replacement, especially the slope of the penetrated material and the water content of the clay ground were measured after finishing tests. Model tests for investigating the stability of an embankment after backfilling were also performed to simulate the behavior of a dike treated with replacement and backfilled with sandy material. As a result of the centrifuge model test, the behavior of the replacement, the mechanism of the replacement material being penetrated into clay ground, and the depth of the replacement were evaluated.

Safety Regulation of Railway Embankment using Velocity of Failure Probability (파괴확률 변화속도를 이용한 철도 성토사면의 안전관리기준)

  • Kim, Hyun-Ki;Shin, Min-Ho;Lee, Sung-Hyeok;Choi, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1037-1042
    • /
    • 2009
  • Safety regulation of railway embankment is restricted by safety factor in dry season or rainy season in Korea. Safety factor which is results from the limit equilibrium analysis is varied by various external conditions. And because it has no reflection point, it is very difficult to manage the safety of trains. Safety regulation such like warning sign, reduce speed and train stop is the best choice to reduce the damage of embankments where it is worried about occurrence of disasters. In this study, additional index is proposed to support present safety standards based on unsaturated soil mechanics and reliability analysis. It is velocity of failure probability. It has an apparent reflection point near present safety regulation. It is possible to modify the regulation for safety management and monitoring system of embankments by using this index.

Embankment and Excavation Behaviour with Shear Parameters of Soft Clayey Soil in FEM (점성토의 유한요소해석에서 전단파라미터에 따른 성토 및 굴착 거동)

  • Kim, Byung Il;Choi, Chanyong;Hong, Kang Han;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.5-17
    • /
    • 2018
  • In this study, the in-situ stress, strength and stress-strain characteristics with shear parameters (UU, CU, ${\bar{CU}}$) are analytically evaluated and the stability analyses are carried out under loading/unloading conditions. The in-situ stress and the stress-strain behaviour may become different according to input shear parameters in finite element analyses with construction step, Especially, if the internal friction angle in Mohr-Coulomb model is set to zero, the in-situ stress and the stress-strain behaviour might not be properly predicted. The results from CU parameter of total stress analysis have no significant difference with the results from CU of effective stress analysis. Therefore, in the numerical analysis for soft ground, CU parameters can be applied to predict in-situ stress and stress-strain behaviors. In addition, the calculation method was proposed to determine the shear parameter of Mohr-Coulomb model, which is corresponding to the shear strength equivalent to that of in-situ soil.

An Establishment of Database for Effective Design of Anti-Frost Heave Layer using Field Data (도로포장의 효율적 동상방지층 설계를 위한 현장 계측자료의 데이터베이스(DB) 구축)

  • Kim, Nak-Seok;Nam, Young-Kug;Cho, Gyu-Tae;Lee, Bum-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.43-47
    • /
    • 2011
  • Korea has seasonal weathers which result in the frosting of soil in winter times, and the thawing of soil in spring. These climate characteristics result in the damaging of pavements, due to the repeated freezing and thawing of road pavements during winter and spring. In order to reduce these pavement damages, anti-frost heave layers are being specially installed, however it is being applied based on foreign researches, and therefore result in the waste of national budget. With this study, a database system was constructed for effective management and monitoring of measured temperatures and function data of 2 meters below the embankment, cut slope, and the cutting-embankment boundary, which are 15 regions picked by the frost index diagram. As the study result, an effective storage and management-purpose database was established for easy data searching and downloading for the pavement design engineers.

A Review on Past Cases of Self-potential Surveys for Dikes and Embankments Considering Streaming Potential (흐름 전위 특성을 고려한 수리시설물에서의 자연 전위 탐사 사례 고찰)

  • Song, Seo Young;Cho, AHyun;Kang, Peter K.;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.1-17
    • /
    • 2021
  • Self-potential (SP) surveys measure naturally occurring differences in electrical potential in the absence of artificial sources and have been applied to various fields since the first application in mineral explorations. Among various causes of SP occurrences, streaming potential is generated by the flow of groundwater, and makes SP surveys suitable for the exploration of groundwater table fluctuation, fractures, sinkholes and landslide occurrences. Recently, there has been many studies that applied SP surveys to monitor water leakage through dikes and embankments. In this review paper, we first review the characteristics and theoretical backgrounds of streaming potential in saturated or unsaturated porous media to introduce it in the embankment among various application field. After the review of the background theory, we review the past cases of field SP surveys on dikes and embankments and also the characteristics of field streaming potential data in the surveys. Further, by analyzing past studies of qualitative as well as quantitative interpretation of SP survey data, we show the possibility of quantitative interpretation of streaming potential data obtained on dikes and embankments. Consequently, it is hope that this review paper helps researches on SP surveys on dikes and embankments, and provides basis for interpretation methods of the SP data to identify leaked area and further leakage rate (or permeability).

Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading

  • Zhou, Yundong;Li, Mingdong;Wen, Kejun;Tong, Ruiming
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.507-513
    • /
    • 2019
  • Reinforced soil and Expanded Polystyrenes (EPS) mixture (RSEM) is a geomaterial which has many merits, such as light weight, wide strength range, easy for construction, and economic feasibility. It has been widely applied to improve soft ground, solve bridge head jump, fill cavity in pipeline and widen highway. Reutilizing dredged sediment to produce RSEM as earthfill can not only consume a large amount of waste sediment but also significantly reduce the construction cost. Therefore, there is an urgent need understand the basic stress-strain characteristics of reinforced dredged sediment-EPS mixture (RDSEM). A series of cyclic triaxial tests were then carried out on the RDSEM and control clay. The effects of cement content, EPS beads content and confining pressure on the cyclic stress-strain behaviour of RDSEM were analyzed. It is found that the three stages of dynamic stress-strain relationship of ordinary soil, vibration compaction stage, vibration shear stage and vibration failure stage are also applicative for RDSEM. The cyclic stress-strain curves of RDSEM are lower than that of control clay in the vibration compaction stage because of its high moisture content. The slopes of backbone curves of RDSEMs in the vibration shear stage are larger than that of control clay, indicating that the existence of EPS beads provides plastic resistance. With the increase of cement content, the cyclic stress-strain relationship tends to be steeper. Increasing cement content and confining pressure could improve the cyclic strength and cyclic stiffness of RDSEM.

Diversity of Fungi in Brackish Water in Korea (국내 기수역 환경의 균류 다양성)

  • Jeon, Yu Jeong;Goh, Jaeduk;Mun, Hye Yeon
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.457-473
    • /
    • 2020
  • We investigated the distribution and diversity of fungi in brackish water and soil from the Eulsukdo Island, Geumgang Estuary Bank, Suncheon Bay, Dae-ho Tide Embankment and coastal sand dune in Sinduri and Bu-nam Tide Embankment, Korea. Fungi were isolated from water samples by hand-pumped filtration, and soil samples were collected and diluted. The isolated fungi were incubated in potato dextrose agar at 25℃. A total of 173 fungal strains were isolated from brackish water and identified according to their respective internal transcribed spacer via phylogenetic analysis. The diversity of all fungal strains was analyzed according to diversity indices. The fungal strains belonged to any of 18 taxonomic orders: Pleosporales, Eurotiales, Capnodiales, Hypocreales, Polyporales, Saccharomycetales, Agaricales, Glomerellales, Mucorales, Dothideales, Russulales, Xylariales, Sordariales, Myrmecridiales, Tubeufiales, Onygenales, Cantharellales, and Amphisphaeriales. Cladosporium spp. (20%), Penicillium spp. (19%), and Fusarium sp. (5%) comprised majority of the identified strains. Two species from the fungal isolates were newly identified in Korea: Sarocladium kiliense NNIBRFG3280 and Fusicolla merismoides NNIBRFG23708.

A Study on the Fundamental Characteristics of a Copper Slag Mixed with Granite Soil (동슬래그 혼합토의 기본 성질에 관한 연구)

  • 김영진;배정호;홍승서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.447-454
    • /
    • 2000
  • This paper presents fundamental characteristics of a copper slag when used geotechnical materials. For this study, it was conducted laboratory tests such as compaction, large direct shear, hydraulic conductivity, leaching, TDR, frost heave test and so on. The results of laboratory tests shown gradually increase in draining capacity and shearing resistance more slag mixing. The unfrozen water in temperature changes and frost heave amounts in condition of -17 $^{\circ}C$ appeared to decrease. Also, toxicity tests based on the domestic solid waste regulations were satisfied with nonhazardous. By this research results, a copper slag mixed with granite soil may been used as granular base and embankment materials, fill etc.

  • PDF