DOI QR코드

DOI QR Code

The Influence of Soil Content on the Settlement Behavior of Gravel Embankement

토사 함량에 따른 자갈 성토재료의 침하특성 분석

  • Suhyung Lee (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Jiho Kim (Department of Civil Engineering, Gangneung Wonju National University) ;
  • Beomjun Kim (Institute of Disaster Prevention, Gangneung Wonju National University) ;
  • Chanyoung Yune (Department of Civil Engineering, Gangneung Wonju National University )
  • Received : 2023.10.13
  • Accepted : 2023.10.24
  • Published : 2023.11.01

Abstract

In this study, we analyzed the settlement characteristics of rockfill embankments mixed with soil by confirming the physical properties of soil materials mixed with silty materials and analyzing the compression characteristics of gravel materials according to the mixing ratio of soil materials. For this, we mixed silty materials into sandy soil to analyze the compression characteristics of soil materials, and we constructed a foundation by mixing various ratios of soil into rockfill materials with a particle distribution similar to that of river gravel, and conducted a one-dimensional compression experiment using a medium-sized chamber. As a result of the experiment, in the case of mixed soil materials, the Transition Fine Content (TFC) appeared in the range of 21~26% depending on the load condition, and in the case of rockfill materials mixed with soil, as the void filling ratio of soil in gravel samples increases, both total compression and creep compression decreases, but after a 50% mixing ratio, the settlement of amount increases again.

본 연구에서는 토사가 혼합된 암성토 제방의 침하 특성을 분석하기 위하여 실트질 재료 혼합에 따른 토사재료의 물리적 특성을 확인하고, 토사재료 혼합 비율에 따른 자갈재료의 압축특성을 분석하였다. 이를 위하여 사질토에 실트질 재료를 혼합하여 토사재료의 압축특성을 분석하였으며, 도상자갈과 유사한 입도분포를 갖는 암성토 재료에 다양한 비율의 토사를 혼합하여 지반을 조성하고 중형챔버를 이용한 일차원 압축실험을 수행하였다. 실험결과, 혼합토사 재료의 경우 Transition Fine Content(TFC)는 하중 조건에 따라서 21~26% 범위로 나타났으며, 토사가 혼합된 암성토 재료의 경우, 자갈 시료 내 토사의 공극 채움비율이 증가함에 따라 총압축량과 크리프 압축이 모두 감소하다가 50% 혼합비 이후에는 다시 침하량이 증가하는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 한국철도기술연구원 주요사업(철도인프라 성능향상을 위한 거더솟음제어 및 유용토안정처리 기술 개발, PK2303A1)의 연구비 지원으로 수행되었습니다. 또한 2021년도 정부(교육부)의 재원으로 한국연구재단의 기초연구사업((2021R1A6A1A03044326)의 지원을 받았습니다. 이에 감사드립니다.

References

  1. Charles, J. A. (2008), The engineering behaviour of fill materials : the use, misuse and disuse of case histories, Geotechnique, Vol. 58, No. 7, pp. 541~570. https://doi.org/10.1680/geot.2008.58.7.541
  2. Chhun, K. T., Lee, S. H., Choi, Y. T. and Yune, C. Y. (2018), Experimental Study on the Effect of Compaction on Long-term Settlement of the Embankment of High-speed Railways, Proceedings of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, pp. 10~15.
  3. Design standards for railway structures (2007), Railway technical research institute, Japan.
  4. Gordon M. Matheson. (1986), Relationship between compacted rockfill density and gradation, Journal of Geotechnical Engineering, Vol. 112, No. 12.
  5. Ham, T. G. (2007), An experimental study on compaction characteristics of gravel-mixed decomposed granite soil, Journal of the Korean Geo-environmental Society, Vol. 23, No. 11, pp. 59~66 (In Korean).
  6. Jeong, J. H., Lee, J. C., Lee, Y. D. and Lee, B. G. (2000), A experimental study on the effect of the soil fraction in the compacted high rockfill foundation, Journal of Civil Engineering Conference, Korean Society of Civil Engineers, Vol. 10, pp. 229~232 (In Korean).
  7. Jyothi, D. N., Prasanna, H. S. and Vishwanath, C. (2020), A sudy on index properties of kaolinite and bentonite sand mixtures, AIP Conference Proceedings, Vol. 2204, No. 1, p. 020009.
  8. KCS 47 10 25, Korean Construction Specification. (2021), Ministry of Land, lnfrastructure and Transport Railway Construction Division (In Korean).
  9. KDS 47 10 25, Korean Design Standard. (2021), Ministry of Land, lnfrastructure and Transport Railway Construction Division (In Korean).
  10. Lee, S. J., Lee, I. W., Lee, J. W. and Lee, J. S. (2009), Longterm compressoin settlement of granular (Rock/Soil Mixture) fill materials under concrete track, Journal of the Korean Geotechnical Society, Vol. 25, No. 8, pp. 95~106 (In Korean).
  11. Monkul, M. M. (2005), Influence of Inter-granular Void Ratio on One Dimensional Compression, Ph.D. Thesis, Dokuz Eylul University, Izmir, Turkey.
  12. Monkul, M. M. and Ozden, G. (2005), Effect of intergranular void ratio on one-dimensional compression behavior, Proceedings of the International Conference on Problematic Soils, Famagusta, Cyprus, Vol. 25, pp. 27.
  13. Monkul, M. M. and Ozden, G. (2007), Compressional behavior of clayey sand and transition fines content, Engineering Geology, Vol. 89, No. 3, pp. 195~205. https://doi.org/10.1016/j.enggeo.2006.10.001
  14. Murthy, T. G., Loukidis, D., Carraro, J. A. H., Prezzi, M. and Salgado, R. (2007), Undrained monotonic response of clean and silty sands, Geotechnique, Vol. 57, pp. 273~288. https://doi.org/10.1680/geot.2007.57.3.273
  15. Ni, Q. T. S. T., Tan, T. S., Dasari, G. R. and Hight, D. W. (2004), Contribution of fines to the compressive strength of mixed soils, Geotechnique, Vol. 54, pp. 561~569. https://doi.org/10.1680/geot.2004.54.9.561
  16. Papadopoulou, A. and Tika, T. (2008), The effect of fines on critical state and liquefaction resistance characteristics of nonplastic silty sands, Soils and Foundations, Vol. 48, No. 5, pp. 713~725. https://doi.org/10.3208/sandf.48.713
  17. Penman, A. D. M. (1917), Rockfill, Building Research Entity, Garston, England, pp. 6~8.
  18. Song, J. W., S, J. J., Kim, D. S. and Park, S. Y. (2008), Experimental study on compaction characteristics of railway roadbed rock soil, Korean Rock Engineering Society Spring Conference, Korean Society for Rock Mechanics, pp. 147~156 (In Korean).
  19. Soft Ground Treatment Manual. (2015), The Project for Improvement of Road Technology in Disaster Affected Area in Myanmar, Japan International Cooperation Agency (JICA), Japan.
  20. Spagnoli, G., Fernandez-Steeger, T., Feinendegen, M., Azzam, R. and Stanjek, H. (2011), Influence of the dielectric constant, electrolyte concentration and pH of the pore fluids on the shear strength of monomineralic clays, Geotechn. J, Ital, Vol. 58 No. 3, pp. 11~24.
  21. Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J. (2002), Undrained fragility of clean sands, silty sands, and sandy silts, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 10, pp. 849~859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  22. Warkentin, B. P. (1972), Use of the liquid limit in characterizing clay soils, Canadian Journal of Soil Science, Vol. 52, No. 3.
  23. Yang, S. L., Lacasse, S. and Sandven, R. (2006), Determination of the transitional fines content of mixtures of sand and nonplastic fines, Geotechnical Testing Journal, Vol. 29, No. 2, pp. 102~107. https://doi.org/10.1520/GTJ14010