DOI QR코드

DOI QR Code

Analysis of Slope Characteristics Around the Location of Solar Power Plants in Gangwon Province, South Korea

강원 지역 산지 태양광 발전시설이 설치된 지역의 사면특성 분석

  • Beomjun Kim (Smart Infrastructure Research Institute, Gangneung-Wonju National University) ;
  • Jiho Kim (Department of Civil and Environmental Engineering, Gangneung-Wonju National University) ;
  • Yongcheol Park (Yujin ENC CO., Ltd.) ;
  • Chanyoung, Yune (Department of Civil and Environmental Engineering, Gangneung-Wonju National University)
  • Received : 2023.10.13
  • Accepted : 2023.10.25
  • Published : 2023.11.01

Abstract

To analyze the slope characteristics of solar power plant installation region in Gangwon province, the installation status of solar power plant in Gangneung and Wonju city were investigated using GIS technique and satellite map. The solar power plant installation of Gangneung and Wonju city is 36 and 48 regions. Through topographical data of solar power plant installation region, a database for area, slope inclination, and elevation was construced. Based on the database, the slope characteristics of solar power plant installation region in Gangneung and Wonju city was analyzed. The results showed that the slope of Wonju city has a relatively higher slope inclination than Gangneung city. In addition, Gangneng and Wonju cities have many regions with maximum inclination of 15° and 34° or more within the solar power plant.

본 연구에서는 강원 지역의 산지 태양광 발전시설이 설치된 지역의 사면 특성을 분석하기 위해, GIS 기법과 위성지도를 활용하여 강릉과 원주 지역의 태양광 발전시설 설치현황을 조사하였다. 강릉과 원주 지역의 태양광 발전시설은 각각 36, 48개소의 발전시설이 설치되어 있는 것으로 나타났다. 또한, 강릉과 원주 지역의 태양광 발전시설 설치지역에 대한 지형자료를 수집하여 면적, 사면경사, 해발고도 등의 데이터베이스를 구축하였다. 이후 구축된 데이터베이스를 활용하여 강릉과 원주 지역의 산지 태양광 발전 시설이 설치된 지역의 사면 특성을 분석하였다. 분석결과, 원주 지역의 사면은 강릉 지역 보다 더 높은 사면경사를 갖는 것으로 나타났다. 또한, 강릉과 원주 지역의 태양광 시설 내에서 15°와 34° 이상의 최대경사를 갖는 지역이 상당수 존재하는 것으로 나타났다.

Keywords

Acknowledgement

본 논문은 행정안전부 "산지(경사지) 태양광 발전시설의 전주기 스마트 안전관리 기술 개발(20018265)"의 지원을 받아 수행되었습니다. 또한, 2021년도 정부(교육부)의 재원으로 한국연구재단의 기초연구사업(2021R1A6A1A03044326)의 지원을 받았습니다. 이에 감사드립니다.

References

  1. Cho, S. E. (2018), Probabilistic stability analysis of unsaturated soil slope under rainfall infiltration, Journal of the Korean Geotechnical Society, Vol. 34, No. 5, pp. 37~51 (In Korean). 
  2. Chae, B. G., Park, K. B., Park, H. J., Choi, J. H. and Kim, M. I. (2012), Analysis of slope stability considering the saturation depth ratio by rainfall infiltration in unsaturated soil, Journal of Engineering Geology, Vol. 22, No. 3, pp. 343~551 (In Korean).  https://doi.org/10.9720/kseg.2012.3.343
  3. Hwang, Y. C. (2015), Change of slope stability due to slope inclination and surface conditions, Journal of the Korean Geotechnical Society, Vol. 31, No. 2, pp. 5~11 (In Korean).  https://doi.org/10.7843/kgs.2015.31.2.5
  4. Jun, K. J. , Kim, G. H. and Yune, C. Y. (2013), Analysis of debris flow type in gangwon province by database construction, Journal of the Korean Society of Civil Engineers, Vol. 33, No. 1, pp. 171~179 (In Korean).  https://doi.org/10.12652/KSCE.2013.33.1.171
  5. Kim, J. H., Yoo, Y. J. and Song, Y. S. (2021), The influence of fitting parameters on the soil-water characteristics curve in stability analysis of an unsaturated natural slope, Journal of Engineering Geology, Vol. 31, No. 2, pp. 165~178. (In Korean). 
  6. Kim, K. S. , Kim, W. Y. , Chae, B. G. , Cho, Y. C. , Lee, C. O. and Song, Y. S. (2006), Geometry of debris flow occurrence on natural slopes, KSEG Conference 2006, KSEG, Daejeon, Korea, pp. 51~59 (In Korean). 
  7. Kang, H. S. and Kim, Y, T. (2014), Physical vulnerability function of buildings impacted by debris flow, Journal of the Korean Society of Hazard Mitigation, Vol. 14, No. 5, pp. 133~143 (In Korean).  https://doi.org/10.9798/KOSHAM.2014.14.5.133
  8. Lu, N., Wayllace, A. and Oh, S. (2013), Infiltration-induced seasonally reactivated instability of a highway embankment near the eisenhower tunnel, Engineering Geology, Vol. 162, pp. 22~32. https://doi.org/10.1016/j.enggeo.2013.05.002
  9. Marchi, L. and D'Agostino, V. (2004), Estimation of debris flow magnitude in the eastern Italian Alps, Earth Surface Processes and Landforms. Vol. 29, No. 2, pp. 207~220. https://doi.org/10.1002/esp.1027
  10. Mountainous Districts Management Act, article 18-2 (Permission for and Reporting on Temporary Use of Mountainous Districts). 
  11. Park, C. S. and Ahn, S. J. (2019), An analytical study on the slope safety factor considering various conditions, Journal of the Korean Geotechnical Society, Vol. 35, No. 5, pp. 31~41 (In Korean). 
  12. Park, J. Y. and Song, Y. S. (2020), Laboratory Experiment and Numerical Analysis on the Precursory Hydraulic Process of Rainfall-Induced Slope Failure, Advances in Civil Engineering, 2717356. 
  13. Song, Y. S., Chae, B. G. and Lee, J. T. (2016), A method for Evaluating the Stability of an Unsaturated Slope in Natural Terrain during Rainfall, Engineering Geology, Vol. 210, pp. 84~92. https://doi.org/10.1016/j.enggeo.2016.06.007
  14. Won, I. G. (2008), A Study on an Estimated of Presumptive Equation of Safety Factor according to the Slope Incline, Changwon National University Master's Thesis (In Korean). 
  15. Yu, J. Y. , Lee, D. G. and Song, K. I. (2023), Analysis of stability and behavior of slope with solar power facilities considering seepage of rainfall, Journal of the Korean Geotechnical Society, Vol. 39, No. 7, pp. 57~67 (In Korean).