The inflection S-shaped software reliability growth model (SRGM) proposed by Ohba(1984) is one of the most commonly used models and has been discussed by many authors. The main purpose of this paper is to estimate the parameters of Ohba's SRGM within the Bayesian framework by applying the Markov chain Monte Carlo techniques. While the maximum likelihood estimates for these parameters are well known, the Bayesian method for the inflection S-shaped SRGM have not been discussed in the literature. The proposed methods can be quite flexible depending on the choice of prior distributions for the parameters of interests. We also compare the Bayesian methods with the maximum likelihood method numerically based on the real data.
The Transactions of the Korea Information Processing Society
/
v.1
no.1
/
pp.14-22
/
1994
This paper proposes two Bayes estimators and their evaluation algorithms of the software reliability at the end testing stage in the Smith's Bayesian software reliability growth model under the data prior distribution BE(a, b), which is more general than uniform distribution, as a class of prior information. We consider both a squared-error loss function and the Harris loss function in the Bayesian estimation procedures. We also compare the MSE performances of the Bayes estimators and their algorithms of software reliability using computer simulations. And we conclude that the Bayes estimator of software reliability under the Harris loss function is more efficient than other estimators in terms of the MSE performances as a is larger and b is smaller, and that the Bayes estimators using the beta prior distribution as a conjugate prior is better than the Bayes estimators under the uniform prior distribution as a noninformative prior when a>b.
The software reliability growth model(SRGM) has been developed in order to estimate such reliability measures as remaining fault number, failure rate and reliability for the developing stage software. Almost of them assumed that the faults detected during testing were eventually removed. Namely, they have studied SRGM based on the assumption that the faults detected during testing were perfectly removed. The fault removing efficiency, however, is imperfect and it is widely known as so in general. It is very difficult to remove detected fault perfectly because the fault detecting is not easy and new error may be introduced during debugging and correcting. Therefore, We want to study imperfect software testing effort for the logistic testing effort which is thought to be the most adequate in this paper.
We propose a software-reliability growth model incoporating the amount of uniform and Weibull testing efforts during the software testing phase in this paper. The time-dependent behavior of testing effort is described by uniform and Weibull curves. Assuming that the error detection rate to the amount of testing effort spent during the testing phase is proportional to the current error content, the model is formulated by a nonhomogeneous Poisson process. Using this model the method of data analysis for software reliability measurement is developed. The optimum release time is determined by considering how the initial reliability R(x|0) would be. The conditions are $R(x|0)>R_o$, $R_o>R(x|0)>R_o^d$ and $R(x|0)<R_o^d$ for uniform testing efforts. Ideal case is $R_o>R(x|0)>R_o^d$. Likewise, it is $R(x|0){\geq}R_o$, $R_o>R(x|0)>R_o^{\frac{1}{g}$ and $R(x\mid0)<R_o^{\frac{1}{g}}$ for Weibull testing efforts. Ideal case is $R_o>R(x|0)>R_o^{\frac{1}{g}}$.
Kim, Seong-Hui;Jeong, Hyang-Suk;Kim, Yeong-Sun;Park, Jung-Yang
The Transactions of the Korea Information Processing Society
/
v.4
no.2
/
pp.395-400
/
1997
An important quality characteristic of a software reliability.Software reliablilty growh models prvied the tools to evluate and moniter the reliabolty growth behavior of the sofwate during the testing phase Therefore failure data collected during the testing phase should be continmuosly analyzed on the basis of some selected software reliability growth models.For the cases where nonhomogeneous Poisson proxess models are the candiate models,we suggest Poisson regression model, which expresses the relationship between the expeted and actual failures counts in disjonint time intervals,for analyzing the failure count data.The weighted lest squares method is then used to-estimate the paramethers in the parameters in the model:The resulting estimators are equivalent to the maximum likelihood estimators. The method is illustrated by analyzing the failutr count data gathered from a large- scale switchong system.
The Transactions of the Korea Information Processing Society
/
v.6
no.12
/
pp.3490-3499
/
1999
The hyper-geometric distribution software reliability growth model (HGDM) was recently developed and successfully applied to the problem of estimating the number of initial faults residual in a software at the beginning of the test-and-debug phase. Though the HGDM is a time-domain software reliability growth model(SRGM), it is not possible to compare the HGDM with other time-domain SRGMs. Furthermore the usual software reliability can not be computed. These drawbacks are derived from fact that the HGDM is not described in terms of the execution time. Thus we develop a continuous-time HGDM with binomial sensitivity factor in order to remove these drawbacks. Statistical characteristics of the suggested model are studied and its applicability is then examined by analyzing real test data sets. It is empirically shown that the continuous-time HGDM with binomial sensitivity factor can be used as an alternative to the current HGDM.
Journal of Korean Institute of Industrial Engineers
/
v.18
no.1
/
pp.37-45
/
1992
Common assumption we frequently encounter in early models of software reliability is that no new faults are introduced during the fault removal process. In real life, however, there are situations in which new faults are introducted as a result of imperfect debugging. This study alleviating this assumption by introducting the probability of perfect error-correction is an extension of Littlewood's work. In this model, the system reliability, failure rates, mean time to failure and average failure frequency are obtained. Here, when the probability of perfect error-correction is one, the results appear identical with those of the previous studies. In the respect that the results of previous studies are special cases of this model, the model developed can be considered as a generalized one.
Journal of Information Technology Applications and Management
/
v.11
no.2
/
pp.191-204
/
2004
Many software reliability growth model(SRGM) have been proposed for past several decades. Most of these propositions assumed the S/W debugging testing efforts be constant or even did not consider them. A few papers were presented as the software reliability evaluation considering the testing effort was important afterwards. The testing effort forms which have been presented by this kind of papers were exponential, Rayleigh, Weibull, or Logistic functions, and one of these 4 types was used as a testing effort function depending on the S/W developing circumstances. We consider the methology to evaluate the SRGN using least square estimator(LSE) and maximum likelihood estimator(MLE) for those 4 functions, and then examine parameters applying actual data adopted from real field test of developing S/W.
This study proposed a method for determining weights for the eight quality characteristics, such as functionality, reliability, usability, maintainability, portability, efficiency, security, and interoperability, which are suggested by international standards, focusing on software test reports. Currently, the test results for software quality evaluation apply the same weight to 8 quality characteristics to obtain the arithmetic average. Weights for 8 quality characteristics were applied using the results from text analysis, and weights were applied using the results of text analysis of test reports for two products. It was confirmed that the average of test reports according to the weighted quality characteristics was more efficient.
Journal of Information Technology Applications and Management
/
v.21
no.4_spc
/
pp.381-401
/
2014
This study proposes the accurate economic effect (employment inducement coefficient, hiring inducement coefficient, index of the sensitivity of dispersion, index of the power of dispersion, and ratio of value added) of Korea software industry by analyzing the inter-industry relation using the modified inter-industry table. Some previous studies related to the inter-industry analysis were reviewed and the key problems were identified. First, in the current inter-industry table publishedby the Bank of Korea, the output of software industry includes not only the output of pure software industry (package software and IT services) but also the output of non-software industry due to the misclassification of the industry. This causes the output to become bigger than the actual output of the software industry. Second, during rewriting the inter-industry table, the output is changing. The inter-industry table is the table in the form of rows and columns, which records the transactions of goods and services among industries which are required to continue the activities of each industry. Accordingly, if only an output of a specific industry is changed, the reliability of the table would be degraded because the table is prepared based on the relations with other industries. This possibly causes the economic effect coefficient to degrade reliability, over or under estimated. This study tries to correct these problems to get the more accurate economic effect of the software industry. First, to get the output of the pure software section only, the data from the Korea Electronics Association(KEA) was used in the inter-industry table. Second, to prevent the difference in the outputs during rewriting the inter-industry table, the difference between the output in the current inter-industry table and the output from KEA data was identified and then it was defined as the non-software section output for the analysis. The following results were obtained: The pure software section's economic effect coefficient was lower than the coefficient of non-software section. It comes from differenceof data to Bank of Korea and KEA. This study hasa signification from accurate economic effect of Korea software industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.