Bayesian Algorithms for Evaluation and Prediction of Software Reliability

소프트웨어 신뢰도의 평가와 예측을 위한 베이지안 알고리즘

  • 박만곤 (부산수산대학교 전자계산학과) ;
  • Published : 1994.05.01

Abstract

This paper proposes two Bayes estimators and their evaluation algorithms of the software reliability at the end testing stage in the Smith's Bayesian software reliability growth model under the data prior distribution BE(a, b), which is more general than uniform distribution, as a class of prior information. We consider both a squared-error loss function and the Harris loss function in the Bayesian estimation procedures. We also compare the MSE performances of the Bayes estimators and their algorithms of software reliability using computer simulations. And we conclude that the Bayes estimator of software reliability under the Harris loss function is more efficient than other estimators in terms of the MSE performances as a is larger and b is smaller, and that the Bayes estimators using the beta prior distribution as a conjugate prior is better than the Bayes estimators under the uniform prior distribution as a noninformative prior when a>b.

본 논문은 스미스의 베이지안 소프트웨어 신뢰도 성장모형을 기반으로 테스팅 단계에서의 소프트웨어 신뢰도에 대한 두가지 베이즈 추정량에 그에 대한 평가 알고 리즘을 제안하는데 목적이 있다. 그 방법으로 사전정보 클래스로서 일양사전분포보다 더 일반적인 베타사전분포 BE(a.b)를 사용하였다. 그 연구 과정으로 베이지안 추정절 차에 있어서 제곱오차결손함수와 해리스결손함수를 고려하고, 컴퓨터 시뮬레이션을 통 해서 소프트웨어 신뢰도에 대한 베이즈추정량들과 그에 따른 알고리즘을 이용하여 평 균자승오차 성능을 비교한다. 연구 결과로써 a가 크면 클수록 그리고 b가 적으면 적을 수록 해리스결손함수하의 소프트웨어 신뢰도의 베이즈추정량이 평균자승오차 성능의 관점에서는 더욱 유효하고, a 가 b보다 더 클 때 공액사전분포인 베타사전분포상의 소 프트웨어 신뢰도의 베이즈추정량이 비정보사전분포인 일양사전분포상에서 소프트웨어 신뢰도의 베이즈추정량보다는 성능이 더 좋다는 결론을 얻는다.

Keywords