• Title/Summary/Keyword: Social network platform

Search Result 218, Processing Time 0.022 seconds

"Where can I buy this?" - Fashion Item Searcher using Instance Segmentation with Mask R-CNN ("이거 어디서 사?" - Mask R-CNN 기반 객체 분할을 활용한 패션 아이템 검색 시스템)

  • Jung, Kyunghee;Choi, Ha nl;Sammy, Y.X.B.;Kim, Hyunsung;Toan, N.D.;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.465-467
    • /
    • 2022
  • Mobile phones have become an essential item nowadays since it provides access to online platform and service fast and easy. Coming to these platforms such as Social Network Service (SNS) for shopping have been a go-to option for many people. However, searching for a specific fashion item in the picture is challenging, where users need to try multiple searches by combining appropriate search keywords. To tackle this problem, we propose a system that could provide immediate access to websites related to fashion items. In the framework, we also propose a deep learning model for an automatic analysis of image contexts using instance segmentation. We use transfer learning by utilizing Deep fashion 2 to maximize our model accuracy. After segmenting all the fashion item objects in the image, the related search information is retrieved when the object is clicked. Furthermore, we successfully deploy our system so that it could be assessable using any web browser. We prove that deep learning could be a promising tool not only for scientific purpose but also applicable to commercial shopping.

An Empirical Study on the Effects of Regulation in Online Gaming Industry via Vector Autoregression Model (벡터자기회귀(VAR) 모형을 활용한 온라인 게임 규제 영향에 대한 실증적 연구: 웹보드 게임을 중심으로)

  • Moonkyoung Jang;Seongmin Jeon;Byungjoon Yoo
    • Information Systems Review
    • /
    • v.19 no.1
    • /
    • pp.123-145
    • /
    • 2017
  • This study empirically examines the effects of regulation on online gaming. Going beyond ad hoc heuristic approaches on individual behavior, we investigate the effects of regulation on dynamic changes of games or service providers. In particular, we propose three theoretical perspectives: social influence to investigate the regulation effect, the role of prior experience to determine the difference in the regulation effect size through users' prior experience, and network externalities to discover the difference in the regulation effect size according to the number of users on an online gaming platform. We use the vector autoregression methodology to model patterns of the co-movement of online games and to forecast game usage. We find that online gamers are heterogeneous. Therefore, policy makers should make suitable regulations for each heterogeneous group to effectively avoid generating gaming addicts without interrupting the economic growth of the online gaming industry.

The Effects of Game User's Social Capital and Information Privacy Concern on SNGReuse Intention and Recommendation Intention Through Flow (게임 이용자의 사회자본과 개인정보제공에 대한 우려가 플로우를 통해 SNG 재이용의도와 추천의도에 미치는 영향)

  • Lee, Ji-Hyeon;Kim, Han-Ku
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.21-39
    • /
    • 2018
  • Today, Mobile Instant Message (MIM) has become a communication means which is commonly used by many people as the technology on smart phones has been enhanced. Among the services, KakaoGame creates much profits continuously by using its representative Kakao platform. However, even though the number of users of KakaoGame increases and the characteristics of the users are more diversified, there are few researches on the relationship between the characteristics of the SNG users and the continuous use of the game. Since the social capital that is formed by the SNG users with the acquaintances create the sense of belonging, its role is being emphasized under the environment of social network. In addition, game user's concerns about the information privacy may decrease the trust on a game APP, and it also caused to threaten about the game system. Therefore, this study was designed to examine the structural relationships among SNG users' social capital, concerns about the information privacy, flow, SNG reuse intention and recommendation intention. The results from this study are as follow. First of all, the participants' bridging social capital had a positive effect on the flow of an SNG, but the bonding social capital had a negative effect on the flow of an SNG. In addition, awareness of information privacy concern had a negative effects on the flow of an SNG, but control of information privacy concern had a positive effect on the flow of an SNG. Lastly, the flow of an SNG had a positive effect on the reuse intention and recommendation intention of an SNG. Also, reuse intention of an SNG had a positive effect on the recommendation intention. Based on the results from this study, academic and practical implications can be drawn. First, This study focused on KakaoTalk which has both of the closed and open characteristics of an SNS and it was found that the SNG user's social capital might be a factor influencing each user's behaviors through the user's flow experiences in SNG. Second, this study extends the scope of prior researches by empirically analysing the relationship between the concerns about the SNG user's information privacy and flow of an SNG. Finally, the results of this research can provide practical guidelines to develop effective marketing strategies considering them for SNG companies.

A Design and Development of Big Data Indexing and Search System using Lucene (루씬을 이용한 빅데이터 인덱싱 및 검색시스템의 설계 및 구현)

  • Kim, DongMin;Choi, JinWoo;Woo, ChongWoo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.107-115
    • /
    • 2014
  • Recently, increased use of the internet resulted in generation of large and diverse types of data due to increased use of social media, expansion of a convergence of among industries, use of the various smart device. We are facing difficulties to manage and analyze the data using previous data processing techniques since the volume of the data is huge, form of the data varies and evolves rapidly. In other words, we need to study a new approach to solve such problems. Many approaches are being studied on this issue, and we are describing an effective design and development to build indexing engine of big data platform. Our goal is to build a system that could effectively manage for huge data set which exceeds previous data processing range, and that could reduce data analysis time. We used large SNMP log data for an experiment, and tried to reduce data analysis time through the fast indexing and searching approach. Also, we expect our approach could help analyzing the user data through visualization of the analyzed data expression.

The Diagnosis of Work Connectivity between Local Government Departments -Focused on Busan Metropolitan City IT Project - (지자체 부서 간 업무연계성 진단 -부산광역시 정보화사업을 중심으로 -)

  • JI, Sang-Tae;NAM, Kwang-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.176-188
    • /
    • 2018
  • Modern urban problems are increasingly becoming a market mix that can not be solved by the power of a single department and the necessity of establishing a cooperation system based on data communication between departments is increasing. Therefore, this study analyzed Busan metropolitan city's IT projects from 2014 to 2018 in order to understand the utilization and sharing status of departmental data from the viewpoint that cooperation between departments can start from the sharing of data with high common utilization. In addition, based on the results of the FGI(Focus Group Interview) conducted for the officials of the department responsible for the informatization project, we verified the results of data status analysis. At the same time, we figured out the necessity of data link between departments through SNA(Social Network Analysis) and presented data that should be shared first in the future. As a result, most of the information systems currently use limited data only within the department that produced the data. Most of the linked data was concentrated in the information department. Therefore, this study suggested the following solutions. First, in order to prevent overlapping investments caused by the operation of individual departments and share information, it is necessary to build a small platform to tie the departments, which have high connectivity with each other, into small blocks. Second, a local level process is needed to develop data standards as an extension of national standards in order to expand the information to be used in various fields. Third, as another solution, we proposed a system that can integrate various types of information based on address and location information through application of cloud-based GIS platform. The results of this study are expected to contribute to build a cooperation system between departments through expansion of information sharing with cost reduction.

Context Sharing Framework Based on Time Dependent Metadata for Social News Service (소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크)

  • Ga, Myung-Hyun;Oh, Kyeong-Jin;Hong, Myung-Duk;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.39-53
    • /
    • 2013
  • The emergence of the internet technology and SNS has increased the information flow and has changed the way people to communicate from one-way to two-way communication. Users not only consume and share the information, they also can create and share it among their friends across the social network service. It also changes the Social Media behavior to become one of the most important communication tools which also includes Social TV. Social TV is a form which people can watch a TV program and at the same share any information or its content with friends through Social media. Social News is getting popular and also known as a Participatory Social Media. It creates influences on user interest through Internet to represent society issues and creates news credibility based on user's reputation. However, the conventional platforms in news services only focus on the news recommendation domain. Recent development in SNS has changed this landscape to allow user to share and disseminate the news. Conventional platform does not provide any special way for news to be share. Currently, Social News Service only allows user to access the entire news. Nonetheless, they cannot access partial of the contents which related to users interest. For example user only have interested to a partial of the news and share the content, it is still hard for them to do so. In worst cases users might understand the news in different context. To solve this, Social News Service must provide a method to provide additional information. For example, Yovisto known as an academic video searching service provided time dependent metadata from the video. User can search and watch partial of video content according to time dependent metadata. They also can share content with a friend in social media. Yovisto applies a method to divide or synchronize a video based whenever the slides presentation is changed to another page. However, we are not able to employs this method on news video since the news video is not incorporating with any power point slides presentation. Segmentation method is required to separate the news video and to creating time dependent metadata. In this work, In this paper, a time dependent metadata-based framework is proposed to segment news contents and to provide time dependent metadata so that user can use context information to communicate with their friends. The transcript of the news is divided by using the proposed story segmentation method. We provide a tag to represent the entire content of the news. And provide the sub tag to indicate the segmented news which includes the starting time of the news. The time dependent metadata helps user to track the news information. It also allows them to leave a comment on each segment of the news. User also may share the news based on time metadata as segmented news or as a whole. Therefore, it helps the user to understand the shared news. To demonstrate the performance, we evaluate the story segmentation accuracy and also the tag generation. For this purpose, we measured accuracy of the story segmentation through semantic similarity and compared to the benchmark algorithm. Experimental results show that the proposed method outperforms benchmark algorithms in terms of the accuracy of story segmentation. It is important to note that sub tag accuracy is the most important as a part of the proposed framework to share the specific news context with others. To extract a more accurate sub tags, we have created stop word list that is not related to the content of the news such as name of the anchor or reporter. And we applied to framework. We have analyzed the accuracy of tags and sub tags which represent the context of news. From the analysis, it seems that proposed framework is helpful to users for sharing their opinions with context information in Social media and Social news.

A Study on the Direction for Planning and Modelling of Multicultural Policy in Korea (다문화정책 방향 제시 및 모형 개발에 관한 연구)

  • Lee, Hyewon
    • Journal of Korean Library and Information Science Society
    • /
    • v.46 no.2
    • /
    • pp.337-366
    • /
    • 2015
  • This study had begun about the conflict between a lack of social adjustment and integration program for resident foreigners in Korea and a duplication of multicultural service in a specific area. This study was implemented through literature review and interview for analyses of the current status and problems of multicultural policy, subdivided into 3-stages model to reach the multiculturalism as multicultural policy process. The first stage suggested the unification of a channel for establishing a policies, reinforcing the functions of government ministries and the cooperation between the branches of the government. The second stage attempted to build the multicutural institutes network in a specific area unit, considering of the geographical and administrative environments. The third stage focused on the activities of individual organizations and proposed collaboration with library, school, support center for multi-cultural families, social service center, sport center, community center, and cultural facility. Additionally, 3-stages model emphasized on civic organization's role. This study was offered a meta-platform leaded by library community for sharing the information about planning and managing of multicutural programs and also mentioned significances for formulating multicutural policies. As a result, this study was presented and specified the 3-stages model to reach the multiculturalism, and verified the various considerations which have influenced the refinements of the multicultural policies as the demographic and geographical characteristics.

Creative Project and Reward Based Crowdfunding:Determinants of Success (창의적 프로젝트와 후원형 크라우드펀딩: 성공요인)

  • Chun, Hesuk
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.5
    • /
    • pp.560-569
    • /
    • 2015
  • Crowd funding is the method of raising money for a project, companies from a large group of people via the Internet, in return for future products or equity. Kickstarter is the largest and most successful crowdfunding site where creative projects raise reward based funding. Drawing on dataset of 80,267 projects with combined funding over $1.3b from 8.1m people, this paper suggest that backer select project based on their preference on the project, instead profitability of the project. It suggests that well-established platform and big size of network increases the chance of success of the project due to a ripple effect and blockbuster effects. Clear communication about the project's idea and goal is highly correlated with success. Regular communication on the project site, such as by constant progress updates, helps the success of the project. Equity-based crowdfunding is emerging as an innovative means of raising capital for businesses, so it has been receiving a lot of attention and expectation from the government and the market. The findings of this paper and others will help to get some understanding and insight into equity-based crowdfunding. However, Kickstarter differs from equity-based crowdfunding in the goals of the backers. Kickstarter's backers are not investors, they are contributors. To understand equity-based crowdfunding, the subject will need further study.

Fake News Detection on YouTube Using Related Video Information (관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법)

  • Junho Kim;Yongjun Shin;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.19-36
    • /
    • 2023
  • As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.

A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)

  • Sean, Visal;Oh, Kyeong-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.97-117
    • /
    • 2012
  • Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.