• Title/Summary/Keyword: Snapback Holding

Search Result 16, Processing Time 0.026 seconds

Simulation-based P-well design for improvement of ESD protection performance of P-type embedded SCR device

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.196-204
    • /
    • 2022
  • Electrostatic discharge (ESD) protection devices of P-type embedded silicon-controlled rectifier (PESCR) structure were analyzed for high-voltage operating input/output (I/O) applications. Conventional PESCR standard device exhibits typical SCR characteristics with very low-snapback holding voltages, resulting in latch-up problems during normal operation. However, the modified device with the counter pocket source (CPS) surrounding N+ source region and partially formed P-well (PPW) structures proposed in this study could improve latch-up immunity by indicating high on-resistance and snapback holding voltage.

Optimal P-Well Design for ESD Protection Performance Improvement of NESCR (N-type Embedded SCR) device (NESCR 소자에서 정전기 보호 성능 향상을 위한 최적의 P-Well 구조 설계)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2014
  • An electrostatic discharge (ESD) protection device, so called, N-type embedded silicon controlled rectifier (NESCR), was analyzed for high voltage operating I/O applications. A conventional NESCR standard device shows typical SCR-like characteristics with extremely low snapback holding voltage, which may cause latch-up problem during normal operation. However, our modified NESCR_CPS_PPW device with proper junction/channel engineering such as counter pocket source (CPS) and partial P-well structure demonstrates highly latch-up immune current-voltage characteristics with high snapback holding voltage and on-resistance.

Simulation-based ESD protection performance of modified DDD_NSCR device with counter pocket source structure for high voltage operating I/O application (고전압 동작용 I/O 응용을 위해 Counter Pocket Source 구조를 갖도록 변형된 DDD_NSCR 소자의 ESD 보호성능 시뮬레이션)

  • Seo, Yong-Jin;Yang, Jun-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.27-32
    • /
    • 2016
  • A conventional double diffused drain n-type MOSFET (DDD_NMOS) device shows SCR behaviors with very low snapback holding voltage and latch-up problem during normal operation. However, a modified DDD_NMOS-based silicon controlled rectifier (DDD_NSCR_CPS) device with a counter pocket source (CPS) structure is proven to increase the snapback holding voltage and on-resistance compare to standard DDD_NSCR device, realizing an excellent electrostatic discharge protection performance and the stable latch-up immunity.

Design of ESD Protection Circuit with improved Snapback characteristics Using Stack Structure (스텍 구조를 이용한 향상된 스냅백 특성을 갖는 ESD 보호회로 설계)

  • Song, Bo-Bae;Lee, Jea-Hack;Kim, Byung-Soo;Kim, Dong-Sun;Hwang, Tae-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.280-284
    • /
    • 2021
  • In this paper, a new ESD protection circuit is proposed to improve the snapback characteristics. The proposed a new structure ESD protection circuit applying the conventional SCR structural change and stack structure. The electrical characteristics of the structure using penta-well and double trigger were analyzed, and the trigger voltage and holding voltage were improved by applying the stack structure. The electron current and total current flow were analyzed through the TCAD simulation. The characteristics of the latch-up immunity and excellent snapback characteristics were confirmed. The electrical characteristics of the proposed ESD protection circuit were analyzed through HBM modeling after forming a structure through TCAD simulator.

Improvement of ESD (Electrostatic Discharge) Protection Performance of NEDSCR (N-Type Extended Drain Silicon Controlled Rectifier) Device using CPS (Counter Pocket Source) Ion Implantation (CPS 이온주입을 통한 NEDSCR 소자의 정전기 보호 성능 개선)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • An electrostatic discharge (ESD) protection device, so called, N-type extended drain silicon controlled rectifier (NEDSCR) device, was analyzed for high voltage I/O applications. A conventional NEDSCR device shows typical SCR-like characteristics with extremely low snapback holding voltage. This may cause latch-up problem during normal operation. However, a modified NEDSCR device with proper junction/channel engineering using counter pocket source (CPS) ion implantation demonstrates itself with both the excellent ESD protection performance and the high latch-up immunity. Since the CPS implant technique does not change avalanche breakdown voltage, this methodology does not reduce available operation voltage and is applicable regardless of the operation voltage.

A 12-kV HBM ESD Power Clamp Circuit with Latchup-Free Design for High-Voltage Integrated Circuits (고전압 집적회로를 위한 래치업-프리 구조의 HBM 12kV ESD 보호회로)

  • Park, Jae-Young;Song, Jong-Kyu;Jang, Chang-Soo;Kim, San-Hong;Jung, Won-Young;Kim, Taek-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The holding voltage of high-voltage devices under the snapback breakdown condition has been known to be much smaller than the operating voltage. Such characteristics cause high-voltage ICs to be susceptible to the transient latch-up failure in the practical system applications, especially when these devices are used as the ESD(ElectroStatic Discharge) power clamp circuit. A new latchup-free design of the ESD power clamp circuit with stacked-bipolar devices is proposed and successfully verified in a $0.35{\mu}m$ 3.3V/60V BCD(Bipolar-CMOS-DMOS) process to achieve the desired ESD level. The total holding voltage of the stacked-bipolar devices in the snapback breakdown condition can be larger than the operating voltage. Proposed power clamp operates safely because of the high holding voltage. From the measurement on the devices fabricated using a $0.35{\mu}m$ BCD Process, it was observed that the proposed ESD power clamp can provide 800% higher ESD robustness per silicon area as compared to the conventional clamps with a high-voltage diode.

Characteristics of N-Type Extended Drain Silicon Controlled Rectifier ESD Protection Device (NED-SCR 정전기보호소자의 특성)

  • Seo, Y.J.;Kim, K.H.;Lee, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1370-1371
    • /
    • 2006
  • An electrostatic discharge (ESD) protection device, so called, N-type extended drain silicon controlled rectifier (NEDSCR) device, was analyzed for high voltage I/O applications. A conventional NEDSCR device shows typical SCR-like characteristics with extremely low snapback holding voltage. This may cause latchup problem during normal operation. However, a modified NEDSCR device with proper junction / channel engineering demonstrates itself with both the excellent ESD protection performance and the high latchup immunity.

  • PDF

Latchup Characteristics of N-Type SCR Device for ESD Protection (정전기 보호를 위한 n형 SCR 소자의 래치업 특성)

  • Seo, Y.J.;Kim, K.H.;Lee, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1372-1373
    • /
    • 2006
  • An electrostatic discharge (ESD) protection device, so called, N-type SCR with P-type MOSFET pass structure (NSCR_PPS), was analyzed for high voltage I/O applications. A conventional NSCR_PPS device shows typical SCR-like characteristics with extremely low snapback holding voltage, which may cause latchup problem during normal operation. However, a modified NSCR_PPS device with proper junction/channel engineering demonstrates highly latchup immune current- voltage characteristics.

  • PDF

A Study on LVTSCR-Based N-Stack ESD Protection Device with Improved Electrical Characteristics (향상된 전기적 특성을 지닌 LVTSCR 기반의 N-Stack ESD 보호소자에 관한 연구)

  • Jin, Seung-Hoo;Woo, Je-Wook;Joung, Jang-Han;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.168-173
    • /
    • 2021
  • In this paper, we propose a new structure of ESD protection device that achieves improved electrical characteristics through structural change of LVTSCR, which is a general ESD protection device. In addition, it applies N-Stack technology for optimized design in the ESD Design Window according to the required voltage application. The N-Well area additionally inserted in the existing LVTSCR structure provides an additional ESD discharge path by electrically connecting to the anode, which improves on-resistance and temperature characteristics. In addition, the short trigger path has a lower trigger voltage than the existing LVTSCR, so it has excellent snapback characteristics. In addition, Synopsys' T-CAD Simulator was used to verify the electrical characteristics of the proposed ESD protection device.

Design of a Gate-VDD Drain-Extended PMOS ESD Power Clamp for Smart Power ICs (Smart Power IC를 위한 Gate-VDD Drain-Extened PMOS ESD 보호회로 설계)

  • Park, Jae-Young;Kim, Dong-Jun;Park, Sang-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.1-6
    • /
    • 2008
  • The holding voltage of the high-voltage MOSFETs in snapback condition is much smaller than the power supply voltage. Such characteristics may cause the latcup-like problems in the Smart Power ICs if these devices are directly used in the ESD (Electrostatic Discharge) power clamp. In this work, a latchup-free design based on the Drain-Extended PMOS (DEPMOS) adopting gate VDD structure is proposed. The operation region of the proposed gate-VDD DEPMOS ESD power clamp is below the onset of the snapback to avoid the danger of latch-up. From the measurement on the devices fabricated using a $0.35\;{\mu}m$ BCD (Bipolar-CMOS-DMOS) Process (60V), it was observed that the proposed ESD power clamp can provide 500% higher ESD robustness per silicon area as compared to the conventional clamps with gate-driven LDMOS (lateral double-diffused MOS).