• 제목/요약/키워드: SnO$_2$ thin films

검색결과 303건 처리시간 0.029초

XRD 패턴에 의한 비정질구조와 I-V 특성분석 (Analyze of I-V Characteristics and Amorphous Sturcture by XRD Patterns)

  • 오데레사
    • 한국산학기술학회논문지
    • /
    • 제20권7호
    • /
    • pp.16-19
    • /
    • 2019
  • 박막이 얇아질수록 전기적인 특성이 좋아지려면 비정질구조가 유리하다. 비정질구조는 케리어가 공핍되는 특징을 이용하여 전도성을 높이는데 효과가 있을 수 있다. 이러한 특성을 확인하는 방법으로 전위장벽이 형성되는 쇼키접합에 대한 연구가 필요하다. 비정질구조와 쇼키접합에 대하여 조사하기 위하여 $SiO_2/SnO_2$ 박막을 준비하였으며, $SiO_2$ 박막은 Ar=20 sccm 만들고 $SnO_2$ 박막은 아르곤과 산소의 유량을 각각 20 sccm으로 혼합가스를 사용하였으며, 마그네트론 스퍼터링 방법으로 $SnO_2$의을 증착하고 $100^{\circ}C$$150^{\circ}C$에서 열처리를 하였다. 비정질구조가 만들어지는 조건을 알아보기 위하여 XRD 패턴을 조사하고 C-V, I-V 측정을 실시하여 Al 전극을 만들고 전기적인 분석을 실시하였다. 공핍층은 열처리과정을 통하여 전자와 홀의 재결합으로 형성되는데 $SiO_2/SnO_2$ 박막은 $100^{\circ}C$에서 열처리를 한 경우 공핍층이 잘 형성이 되었으며, 미시영역에서는 전기적으로 전류가 크게 작용하는 것을 확인하였다. $100^{\circ}C$에서 열처리를 한 비정질의 $SiO_2/SnO_2$ 박막은 XRD 패턴에서 $33^{\circ}$에서는 픽이 나타나지 않았으며, $44^{\circ}$에서는 픽이 생겼다. 쇼키접합에 의해서 거시적(-30V<전압<30V)으로는 절연체 특성이 보였으나 미시적(-5V<전압<5V)으로는 전도성이 나타났다. 케리어가 부족한 공핍층에서의 전도는 확산전류에 의하여 전도가 이루어진다. 미소영역에서 동작하는 소자인 경우에는 공핍효과에 의한 쇼키접합이 전류의 발생과 전도에 유리하다는 것을 확인하였다.

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • 한동석;문대용;박재형;강유진;윤돈규;신소라;박종완
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

High-Performance Amorphous Multilayered ZnO-SnO2 Heterostructure Thin-Film Transistors: Fabrication and Characteristics

  • Lee, Su-Jae;Hwang, Chi-Sun;Pi, Jae-Eun;Yang, Jong-Heon;Byun, Chun-Won;Chu, Hye Yong;Cho, Kyoung-Ik;Cho, Sung Haeng
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1135-1142
    • /
    • 2015
  • Multilayered ZnO-$SnO_2$ heterostructure thin films consisting of ZnO and $SnO_2$ layers are produced by alternating the pulsed laser ablation of ZnO and $SnO_2$ targets, and their structural and field-effect electronic transport properties are investigated as a function of the thickness of the ZnO and $SnO_2$ layers. The performance parameters of amorphous multilayered ZnO-$SnO_2$ heterostructure thin-film transistors (TFTs) are highly dependent on the thickness of the ZnO and $SnO_2$ layers. A highest electron mobility of $43cm^2/V{\cdot}s$, a low subthreshold swing of a 0.22 V/dec, a threshold voltage of 1 V, and a high drain current on-to-off ratio of $10^{10}$ are obtained for the amorphous multilayered ZnO(1.5nm)-$SnO_2$(1.5 nm) heterostructure TFTs, which is adequate for the operation of next-generation microelectronic devices. These results are presumed to be due to the unique electronic structure of amorphous multilayered ZnO-$SnO_2$ heterostructure film consisting of ZnO, $SnO_2$, and ZnO-$SnO_2$ interface layers.

기판의 종류에 따른 SnO2 박막의 전기적인 특성 연구 (Study on the Electrical Characteristics of SnO2 on p-Type and n-Type Si Substrates)

  • 오데레사
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.9-14
    • /
    • 2017
  • $ISnO_2$ thin films were prepared on p-type and n-type Si substrates to research the interface characteristics between $SnO_2$ and substrate. After the annealing processes, the amorphous structure was formed at the interface to make a Schottky contact. The O 1s spectra showed the bond of 530.4 eV as an amorphous structure, and the Schottky contact. The analysis by the deconvoluted spectra was observed the drastic variation of oxygen vacancies at the amorphous structure because of the depletion layer is directly related to the oxygen vacancy. $SnO_2$ thin film changed the electrical properties depending on the characteristics of substrates. It was confirmed that it is useful to observe the Schottky contact's properties by complementary using the XPS analysis and I-V measurement.

  • PDF

열처리에 따른 SnO2 박막의 표면형상 (Influence of Thermal Treatment on Surface Morphology of Tin Dioxide Thin Films)

  • 박경희;류현욱;서용진;이우선;홍광준;박진성
    • 한국재료학회지
    • /
    • 제13권7호
    • /
    • pp.442-446
    • /
    • 2003
  • Tin dioxide ($SnO _2$) thin films were deposited at $375^{\circ}C$ on alumina substrate by metal-organic chemical vapor deposition. A few hillocks like a cauliflower were observed and the number of hillock on thin film surface increased with annealing temperature in air atmosphere. The oxygen content and the binding energy during air annealing at$ 500^{\circ}C$ came to close the stoichiometric $SnO_2$. The cauliflower hillocks seem to be the result of the continuous migration of the tiny grains to release the stress of an expanded grain. Sensitivity of CO gas depended on annealing temperature and increased with increasing annealing temperature.

The Influence of Ag Thickness on the Electrical and Optical Properties of ZnO/Ag/SnO2 Tri-layer Films

  • Park, Yun-Je;Choi, Jin-Young;Choe, Su-Hyeon;Kim, Yu-Sung;Cha, Byung-Chul;Kim, Daeil
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.145-149
    • /
    • 2019
  • Transparent and conductive ZnO/Ag/SnO2 (ZAS) tri-layer films were deposited onto glass substrates at room temperature by using radio frequency (RF) and direct current (DC) magnetron sputtering. The thickness values of the ZnO and $SnO_2$ thin films were kept constant at 50 nm and the value for Ag interlayer was varied as 5, 10, 15, and 20 nm. In the XRD pattern the diffraction peaks were identified as the (002) and (103) planes of ZnO, while the (111), (200), (220), and (311) planes could be attributed to the Ag interlayer. The optical transmittance and electrical resistivity were dependent on the thickness of the Ag interlayer. The ZAS films with a 10 nm thick Ag interlayer exhibited a higher figure of merit than the other ZAS films prepared in this study. From the observed results, a ZAS film with a 10 nm thick Ag interlayer was believed to be an alternative transparent electrode candidate for various opto-electrical devices.

XPS를 이용한 Sb-doped $SnO_2$ 투명전도막의 특성 분석 (Characterization of transparent Sb-doped $SnO_2$ conducting films by XPS analysis)

  • 임태영;김창열;심광보;오근호
    • 한국결정성장학회지
    • /
    • 제13권5호
    • /
    • pp.254-259
    • /
    • 2003
  • Sol-gel dip coating법으로 soda lime glass 기판 위에 ATO(antimony-doped tin oxide) 투명전도막을 제조할 때, 기판 위에 형성된 $SiO_2$ barrier 층 및 $N_2$ gas annealing 에 따른 광투과율 및 전기적 특성에 대한 효과를 정량적으로 측정하고, XPS(X-ray photoelectron spectroscopy) 분석을 통해 고찰하였다. $SiO_2$ barrier층을 갖는 glass 기판 위에 코팅된400 nm 두께의 ATO 박막을 질소분위기에서 annealing한 결과, 광 투과율은 84%그리고 전기저항은 약 $5.0\times 10^{-3}\Omega \textrm{cm}$로 측정되었다 XPS 분석결과 이러한 우수한 전기전도성은 $SiO_2$ buffer층이 glass 기판으로부터 Na 이온의 확산을 막아 ATO막 내에 $Na_2SnO_3$ 및 SnO와 같은 2차상 불순물의 형성을 억제하여 막 내부의 Sb의 농도 및 $Sb^{5+}/Sb^{3+}$ 비를 증가시키고, $N_2$ annealing은 $Sb^{5+}$ 도 환원시키지만 $Sn^{4+}$를 환원시키는 효과가 크게 작용하였기 때문으로 사료된다.

Low Temperature Deposition of the $In_2O_3-SnO_2$, $SnO_2$ and $SiO_2$ on the Plastic Substrate by DC Magnetron Sputtering

  • Kim, Jin-Yeol;Kim, Eung-Ryeol;Lee, Jae-Ho;Kim, Soon-Sik
    • Journal of Information Display
    • /
    • 제2권1호
    • /
    • pp.38-42
    • /
    • 2001
  • Thin films of $In_2O_3-SnO_2$(ITO), $SnO_2$, and $SiO_2$ were prepared on the PET substrate by DC magnetron roll sputtering. 135 nm thick ITO film on $SiO_2$/PET substrate has sheet resistance as low as 55 ${\Omega}/square$ and transmittance as high as 85%. $H_2O$gas permeation through the film was 0.35 g/$m^2$ in a day. These properties are enough on optical film for the plastic LCD substrate or touch panel. Both refractive index and sheet resistance of ITO was found to be very sensitive to $O_2$ flow rate. Oxygen flow conditions have been optimized from 4 to 5 SCCM at $10^{-3}$torr. It is also shown that both thickness of $SnO_2$ and refractive index of $SiO_2$ decrease as $O_2$ flow rate increases.

  • PDF

Influence of Y-Doped on Structural and Optical Properties of ZnO Thin Films Prepared by Sol-Gel Spin-Coating Method

  • Park, Hyunggil;Leem, Jae-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.336-336
    • /
    • 2013
  • Zinc oxide (ZnO) based transparent oxide semiconductors have been studied due to their high transmittance and electrical conductivity. Pure ZnO have unstable optical and electrical properties at high temperatures but doped ZnO thin films can have stable optical and electrical properties. In this paper, transparent oxide semiconductors of Y-doped ZnO thin films prepared by sol-gel method. The ionic radius of $Y^{3+}$ (0.90 A) is close to that of $Zn^{2+}$ (0.74 A), which makes Y suitable dopant for ZnO thin films. The Sn-doped ZnO thin films were deposited onto quartz substrates with different atomic percentages of dopant which were Y/Zn = 0, 1, 2, 3, 4, and 5 at.%. These thin films were pre-heated at $150^{\circ}C$ for 10 min and then annealed at $500^{\circ}C$ or 1 h. The structural and optical properties of the Y-doped ZnO thin films were investigated using field-emission scanning electronmicroscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and photoluminescence (PL).

  • PDF

Preparation of multi-component thin film by facing target sputtering system

  • Kim, Kyung-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.252-252
    • /
    • 2010
  • AIZTO (Al-In-Sn-ZnO) thin film was deposited on glass substrate at room temperature by facing target sputtering (FTS) system. The FTS system was designed to array two targets facing each other. Two different kinds of targets were installed on FTS system. We used the ITO (In2O3 90wt%, SnO2 10wt%) target and the AZO (ZnO 98wt%, Al2O3 2wt%). AIZTO films were deposited in each of the applied power of the targets. The electrical and structural properties of the as-deposited AIZTO thin films were then examined by hall-effect measurement, and by using atomic force microscope (AFM), X-ray diffractometer (XRD), and energy dispersive x-ray spectroscopy (EDX). The optical property was measured by an UV-VIS spectrometer.

  • PDF