• Title/Summary/Keyword: Smog chamber

Search Result 27, Processing Time 0.027 seconds

Design and Performance Evaluation of the KIST Indoor Smog Chamber (실내 스모그 챔버의 설계 및 성능평가)

  • 배귀남;김민철;이승복;송기범;진현철;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.437-449
    • /
    • 2003
  • A multi-functional indoor smog chamber was designed and evaluated to investigate photochemical or water vapor reaction mechanisms of air pollutants. Various smog chamber experiments could be conducted using ambient air or purified air in this smog chamber. The smog chamber consisted of a housing, a Teflon bag, blacklights, injection ports, sampling ports, and utility facilities. The characteristics of light source, the wall losses of air pollutants, and the quality of purified air were experimentally investigated. The maximum NO$_2$ photolysis rate was 1.10 min$^{-1}$ . In a 2.5-m$^3$ Teflon bag, the wall losses of ambient $O_3$, NO, and NO$_2$ were 1.2~2.4$\times$10$^{-3}$ min$^{-1}$ , 0.7~2.0$\times$10$^{-3}$ min$^{-1}$ , and 0.4~2.0$\times$10$^{-3}$ min$^{-1}$ , respectively. The wall loss of ambient particles ranging 0.05 to 0.2 ${\mu}{\textrm}{m}$ was 1.8~5.4$\times$10$^{-3}$ min$^{-1}$ , which was slightly higher than those of ambient gaseous species. The purified air supply system provided high quality of air with NO$_{x}$ < 1 ppb, and total hydrocarbons < 5 ppb.b.

Review of Recent Smog Chamber Studies for Secondary Organic Aerosol (스모그 챔버를 이용한 이차 초미세유기먼지의 최근 연구 동향)

  • Lim, Yong Bin;Lee, Seung-Bok;Kim, Hwajin;Kim, Jin Young;Bae, Gwi-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.131-157
    • /
    • 2016
  • A smog chamber has been an effective tool to study air quality, particularly secondary organic aerosol (SOA), which is typically formed by atmospheric oxidation of volatile organic compounds (VOCs). In controlled environments, smog chamber studies have validated atmospheric oxidation by identifying, quantifying and monitoring products with state-of-art instruments (e.g., aerosol mass spectrometer, scanning mobility particle sizer) and provided chemical insights of SOA formation by elucidating reaction mechanisms. This paper reviews types of smog chambers and the current state of smog chamber studies that have accomplished to find pathways of SOA formation, focusing on gas-particle partitioning of semivolatile products of VOC oxidation, heterogeneous reactions on aerosol surface, and aqueous chemistry in aerosol waters (e.g., cloud/fog droplets and wet aerosols). For future chamber studies, then, this paper discusses potential formation pathways of fine particles that East Asia countries (e.g., Korea and China) currently suffer from due to massive formation that gives rise to fatal health problems.

Photochemical Reactions of Real Gas in an Indoor Smog Chamber (실내스모그 챔버에서 실제대기를 이용한 광화학반응 메카니즘에 관한 연구)

  • 김지영;강경희;안흥순;동종인
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.171-172
    • /
    • 2002
  • 대기중의 2차 광화학 반응을 포함하는 대기중의 반응을 이해하고 해석하기 위하여 Smog Chamber를 이용한 대기중 광화학 반응연구가 활발히 진행 중에 있으며, 국내에서도 연구가 이루어지고 있다 이러한 연구들은 고농도 수준에서 광화학 반응 메커니즘에 중점을 두고 있는 것으로 실제 대기의 농도수준에서 광화학반응에 관한 연구자료는 미흡한 실정이다. 또한, 서울지역의 경우 광화학 스모그의 대표적인 경우에 해당하는 LA Smog의 경우와 비교할 때 습도가 높으며, 대기 중 먼지의 농도 또한 비교적 높다고 볼 수 있으며 이러한 서울지역의 광화학 스모그 특성을 규명하기 위하여 기초연구라 할 수 있는 Smog Chamber 연구가 필요하다. (중략)

  • PDF

Photochemical Reactions of Aromatic Hydrocarbons in Indoor and Outdoor Smog Chambers (실내/외 스모그 챔버에서 방향족계 탄화수소의 광화학 반응 비교 연구)

  • 안흥순;동종인
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.135-136
    • /
    • 2002
  • 최근 들어, 대도시 지역에서 오존(O$_3$)농도가 환경기준을 초과하는 빈도가 증가함에 따라 대기 중 광화학 대기오염현상과 그에 따른 오존 등 2차 광화학 오염물질에 대해 많은 관심이 집중되고 있다. 이러한 복잡한 대기중의 반응을 이해하고 해석하기 위하여 Smog Chamber를 이용한 대기 중 광화학 반응 연구가 진행 중에 있으며, 국내에서도 연구가 이루어지고 있다 Smog Chamber를 통해 대기 중의 광화학 반응의 세부적인 이해와 수학적 모델에 필요한 화학반응들의 변수를 제공하는 등 포괄적이고 종합적인 연구를 수행할 수 있다. (중략)

  • PDF

Formation and Growth of Atmospheric Aerosols by Water Vapor Reactions in an Indoor Smog Chamber (스모그 챔버에서 수분 반응에 의한 대기 에어로졸의 생성 및 성장)

  • Kim Min Cheol;Bae Gwi-Nam;Moon Kil-Choo;Park Ju-Yeoun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.161-174
    • /
    • 2004
  • Aerosol formation and growth by water vapor reactions were investigated in a 2.5 -㎥ indoor smog chamber filled with the unfiltered ambient air. The relative humidity of test ambient air was elevated at 59~64% or 84~88% by adding water vapor. The aerosol number size distribution and the concentrations of $O_3$, NO, NO$_2$, and SO$_2$ were measured during the experiments. The $O_3$ and NO$_2$ gases were well reacted with the water vapor at high relative humidity of 84~88%, and the reaction rates of these gases seemed to be decreased at low relative humidity of 59~64%. The formation and condensational growth phenomena of ambient aerosols by water vapor reactions were observed in a Teflon bag, depending strongly on the initial particle size distribution. The water vapor reactions might be affected by the contents of oxidants produced by photochemical reactions under sunlight.

Aerosol Wall Loss in Teflon Film Chambers Filled with Ambient Air

  • Lee Seung-Bok;Bae Gwi-Nam;Moon Kil-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.35-41
    • /
    • 2004
  • Aerosol wall loss is an important factor affecting smog chamber experiments, especially with chambers made of Teflon film. In this work, the aerosol wall loss was investigated in 2.5 and $5.8-m^3$ cubic-shaped Teflon film chambers filled with ambient air. The natural change in the particle size distribution was measured using a scanning mobility particle sizer in a dark environment. The rate of aerosol wall loss was obtained from the deposition theory suggested by Crump and Seinfeld (1981). The measured rates of aero-sol wall loss were In a good agreement with the theoretical and experimental values given by McMurry and Rader (1985), implying that the electrostatic effect enhances particle deposition on the chamber wall. The significance of aerosol wall loss correction was demonstrated with the photochemical reaction experiments using the ambient air.

Comparison of Temperature and Light Intensity Effects on the Photooxidation of Toluene-NOx-Air Mixture (온도와 광도가 톨루엔-NOx-공기 혼합물의 광산화 반응에 미치는 영향의 비교)

  • Ju, Ok-Jung;Bae, Gwi-Nam;Choi, Ji-Eun;Lee, Seung-Bok;Ghim, Young-Sung;Moon, Kil-Choo;Yoon, Soon-Chang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.353-363
    • /
    • 2007
  • To differentiate temperature effect from the light intensity effect on the formation of secondary products during the photooxidation of toluene-$NO_x$-air mixtures, steady-state air temperature was changed from $20^{\circ}C\;to\;33^{\circ}C$ at the same light intensity of $0.39min^{-1}$ in an indoor smog chamber. Smog chamber consisted of 64 blacklights and a $5.8m^3$ reaction bag made of Teflon film. Air temperature was controlled by an air-conditioning system. The starting time for rapid conversion of NO to $NO_2$ was slightly delayed with decreasing air temperature. In contrast to light intensity effect, the ozone formation time and the ozone production rate were insensitive to air temperature. Although the formation time for secondary organic aerosols was not changed, the particle number concentration increased with temperature. However, the newly formed secondary organic aerosol mass at lower temperature was higher than that at higher temperature. Since light intensity significantly affected the starting time and quantity of ozone and aerosol formation, it is considered that the temperature could contribute partly the quantity of aerosol formation during the photooxidation of toluene-$NO_x$-air mixtures.

Effect of light intensity on the ozone formation and the aerosol number concentration of ambient air in Seoul (광도가 서울 대기의 오존 생성 및 에어로졸 수 농도에 미치는 영향)

  • Bae, Gwi-Nam;Park, Ju-Yeon;Kim, Min Cheol;Lee, Seung-Bok;Moon, Kil-Choo;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.4 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • The effect of light intensity on the ozone formation and the aerosol number concentration during the photochemical reactions of ambient air was investigated in an indoor smog chamber. The smog chamber consists of a housing, 64 blacklights, and a $2.5-m^3$ reaction bag made of Teflon film. The bag was filled with the unfiltered ambient air in Seoul from January 10 to March 18, 2002. In this work, the photolysis rate of $NO_2$, $k_1$ was used as an index of light intensity. Three levels of light intensity were controlled by changing the number of blacklights turned on among 64 blacklights: $0.29min^{-1}$ (50%), $0.44min^{-1}$ (75%), $0.57min^{-1}$ (100%). The ozone concentration increased rapidly within 10 minutes after irradiation irrespective of light intensity, thereafter it increased linearly during the irradiation. The ozone production rate seems to be dependent on both the light intensity and the quality of ambient air introduced into the reaction bag. The change in aerosol number concentration also depended on both the light intensity and the ambient air quality, especially aerosol size distribution. Based on the initial ambient aerosol size distributions, the photochemical potential for aerosol formation and growth is classified into two cases. One is the case showing aerosol formation and growth processes, and the other is the case showing no apparent change in particle size distribution.

  • PDF