• 제목/요약/키워드: Smart Multi-sensor

Search Result 200, Processing Time 0.023 seconds

Multiuser Detection of Electric Scooter Using Tilt and Pressure Sensors (기울기 센서와 압력 센서를 이용한 전동 킥보드용 다인승 감지 방안)

  • Moonjeong Ahn;Jia Kim;Jihoon Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.28-32
    • /
    • 2024
  • The personal mobility Sharing service is currently active. Especially, electric scooters are widely utilized because they can move comfortably at a high speed over a short distance with a simple driving method. Its driving method is easy, but there is no protection device to protect the bare body. So, there is a greater accident than other means of transportation, and if two people are on board, there is higher accident probability. However, since there is no specific ways to prevent multi-person boarding yet, we propose a multi-person boarding detection model using tilt and pressure sensor. The proposed method measures the tilt degree and direction by using a tilt sensor installed in the center of the board plate and detects multi-people riding.

  • PDF

Design and Implementation of Multi-Sensor based Smart Sensor Network using Mobile Devices (모바일 디바이스를 사용한 멀티센서 기반 스마트 센서 네트워크의 설계 및 구현)

  • Koo, Bon-Hyun;Choi, Hyo-Hyun;Shon, Tae-Shik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.1-11
    • /
    • 2008
  • Wireless Sensor Networks is applied to improvement of life convenience or service like U-City as well as environment pollution, tunnel and structural health monitoring, storm, and earthquake diagnostic system. To increase the usability of sensor data and applicability, mobile devices and their facilities allow the applications of sensor networks to give mobile users and actuators the results of event detection at anytime and anywhere. In this paper, we present MUSNEMO(Multi-sensor centric Ubiquitous Smart sensor NEtwork using Mobile devices) developed system for providing more efficient and valuable information services with a variety of mobile devices and network camera integrated to WSN. Our system is performed based on IEEE 802.15.4 protocol stack. To validate system usability, we built sensor network environments where were equipped with five application sensors such magnetic, photodiode, microphone, motion and vibration. We also built and tested proposed MUSNEMO to provide a novel model for event detection systems with mobile framework.

An Energy-Efficient Multi-Hop Scheme Based on Cooperative MIMO for Wireless Sensor Networks

  • Peng, Yu-Yang;Abn, Seong-Beom;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.796-800
    • /
    • 2011
  • An energy-efficient multi-hop scheme based on cooperative MIMO (multiple-input multiple-output) technique is proposed for wireless sensor networks, taking into consideration the modulation constellation size, transmission distance, and extra training overhead requirement. The scheme saves energy by selecting the hop length. In order to evaluate the performance of the proposed scheme, a detailed analysis of the energy and delay efficiencies in the proposed scheme compared with the equidistance scheme is presented. Results from numerical experiments indicate that by use of the proposed scheme significant savings in terms of total energy cousumption can be achieved.

Illuminance Dynamic Range Expansion using Gamma & Multi-Point Knee for Smart Phone Camera (감마 및 다중 포인터 니를 이용한 스마트폰 카메라의 광 다이나믹 영역 확장)

  • Choi, Duk-Kyu;Han, Chan-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The narrow dynamic range of most smart phone cameras is severely limited. It usually is narrower than the dynamic range of most scenes. So we proposes a illuminance dynamic range expansion using multi-point knee for smart phone camera. Such as logarithmic functions the proposed method compress the image sensor output signal. Additionally, the proposed method was merged into the gamma that is essential circuit for any cameras. To justifying multi-point knee effectiveness, we configure the control and quality evaluation system for smart phone camera module. Experimental results show that the lost information by cut off and saturated affectively reconstructed in darker and in brighter areas. Finally this methods have advantage to implement without any changing hardware for conventional smart phones.

A Study for Context-Awareness based on Multi-Sensor in the Smart-Clothing (스마트의류에서 멀티센서 기반의 상황인지에 관한 연구)

  • Park, Hyun-Moon;Jeon, Byung-Chan;Ryu, Daehyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.71-78
    • /
    • 2013
  • In this paper, we propose a method to infer the user's behavior and situation through collected data from multi-sensor equipped with a smart clothing and it was implemented as a smartphone App. User context reasoning and behavior determine is very difficult using single sensor depending on the measured value of the sensor varies from environmental noise. So, the reasoning and the digital filter algorithms to determine user behavior reducing noise and are required. In this paper, we used EWMA, Kalman Filter and SVM processing behavior for 3-axis value as a representative value of one.

Design and Implementation of Tangible Interface Using Smart Puck System

  • Bak, Seon Hui;Lee, Jeong Bae;Kim, Jeong Ho;Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, we propose a novel tangible interface system whose system does not use the expensive hardware is introduced. This proposed tangible interface is used on the table top capacitive multi touch-screen. The tangible interface apparatus which is called smart puck has sanguine arduino compatible board. The board has a Cds photo-sensing sensor and the EPP8266 WiFi module. The Cds sensor decodes the photometric PWM signals from the system and sends corresponding information to the system via TCP/IP. The system has a server called MT-Server to communicate with the smart pucks. The tangible interface shows reliable operation with fast response that is compatible to the expensive traditional devices in the market.

Development of Estimated Model for Axial Displacement of Hybrid FRP Rod using Strain (Hybrid FRP Rod의 변형률을 이용한 축방향 변위추정 모형 개발)

  • Kwak, Kae-Hwan;Sung, Bai-Kyung;Jang, Hwa-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.639-645
    • /
    • 2006
  • FRP (Fiber Reinforced Polymer) is an excellent new constructional material in resistibility to corrosion, high intensity, resistibility to fatigue, and plasticity. FBG (Fiber Bragg Grating) sensor is widely used at present as a smart sensor due to lots of advantages such as electric resistance, small-sized material, and high durability. However, with insufficiency of measuring displacement, FBG sensor is used only as a sensor measuring physical properties like strain or temperature. In this study, FRP and FBG sensors are to be hybridized, which could lead to the development of a smart FRP rod. Moreover, developing the estimated model for deflection with neural network method, with the data measured through FBG sensor, could make conquest of a disadvantage of FBG sensor - uniquely used for sensing strain. Artificial neural network is MLP (Multi-layer perceptron), trained within error rate of 0.001. Nonlinear object function and back-propagation algorithm is applied to training and this model is verified with the measured axial displacement through UTM and the estimated numerical values.

A Study on Piezoresistive Characteristics of Smart Nano Composites based on Carbon Nanotubes for a Novel Pressure Sensor (압력센서 개발을 위한 탄소 나노 튜브 기반 지능형 복합소재 전왜 특성 연구)

  • Kim, Sung Yong;Kim, Hyun Ho;Choi, Baek Gyu;Kang, In Hyuk;Lee, Ill Yeong;Kang, In Pil
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • This paper presents a preliminary study on the pressure sensing characteristics of smart nano composites made of MWCNT (multi-walled carbon nanotube) to develop a novel pressure sensor. We fabricated the composite pressure sensor by using a solution casting process. Made of carbon smart nano composites, the sensor works by means of piezoresistivity under pressure. We built a signal processing system similar to a conventional strain gage system. The sensor voltage outputs during the experiment for the pressure sensor and the resistance changes of the MWCNT as well as the epoxy based on the smart nano composite under static pressure were fairly stable and showed quite consistent responses under lab level tests. We confirmed that the response time characteristics of MWCNT nano composites with epoxy were faster than the MWCNT/EPDM sensor under static loads.

Robust wireless sensor network configuration design for structural health monitoring with optimal information-energy tradeoff

  • Xiao-Han Hao;Sin-Chi Kuok;Ka-Veng Yuen
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.465-482
    • /
    • 2024
  • In this paper, a robust wireless sensor network configuration design method is proposed to develop the optimal configuration under the consideration of sensor failure and energy consumption. A malfunctioned sensor in a wireless sensor network may lead to data transmission failure of the entire sensing cluster, inducing severe deterioration in system identification performance. The proposed method determines a wireless sensor network configuration that is robust against sensor failure. By utilizing Bayesian inference, we introduce a robust indicator to evaluate the impact on estimation accuracy of sensor configurations with various malfunctioned sensors. Moreover, a network formation strategy is proposed to optimize the energy efficiency of the wireless sensor network configuration. Therefore, the resultant robust wireless sensor network configuration can operate with the minimum energy consumption while the measurement information of the sensor network with malfunctioned sensors can be guaranteed. The proposed method is illustrated by designing the robust wireless sensor network configurations of a truss model and a bridge model.

Simulation of Mobile Robot Navigation based on Multi-Sensor Data Fusion by Probabilistic Model

  • Jin, Tae-seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.167-174
    • /
    • 2018
  • Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.