• 제목/요약/키워드: Smart Material

검색결과 955건 처리시간 0.028초

Health Monitoring을 위한 스마트 복합재료의 적용 (An Application of Smart Composite for Health Monitoring)

  • 이진경;하영준;박영철;이준현;이상필
    • 비파괴검사학회지
    • /
    • 제27권4호
    • /
    • pp.328-338
    • /
    • 2007
  • 스마트 재료를 이용한 복합재료의 가장 큰 장점 중의 하나는 재료내부에 발생한 균열을 제어하는데 있다. 구조용 재료로 사용 중에 구조물 내에 균열이 발생할 때 균열의 진전을 억제할 수 있는 방법 중의 하나가 형상기억합금재료의 형상기억효과를 이용하는 것이다. 본 연구에서는 최적의 제조조건을 도출하여 형상기억합금을 이용한 형상기억복합재료를 제조하였다. 또한 형상기억복합재료 내부의 형상기억합금에 의한 형상기억효과를 평가하기 위하여 복합재료에 인장하중을 가하여 복합재료에 발생하는 응력분포를 평가하고 복합재료에 열을 가하여 형상기억합금을 원래의 상태로 복귀하면서 복합재료 전체의 응력변화를 평가하였다. 형상기억복합재료의 인장하중에 따른 응력분포를 관찰하기 위하여 광탄성에 의한 가시화 장치를 이용하였다.

전지형 크레인의 인양물 충돌방지를 위한 환경탐지 센서 시스템 개발 (Collision Avoidance Sensor System for Mobile Crane)

  • 김지철;김영재;김민극;이한민
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.62-69
    • /
    • 2022
  • Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver's vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.

스마트 LED Driver ICs 패키지용 700 V급 Power MOSFET의 설계 최적화에 관한 연구 (Study on the Design of Power MOSFET for Smart LED Driver ICs Package)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.75-78
    • /
    • 2016
  • This research was designed 700 level power MOSFET for smart LED driver ICs package. And we analyzed electrical characteristics of the power MOSFET as like breakdown voltage, on-resistance and threshold voltage. Because this research is important optimal design for smart LED ICs package, we designed power MOSFET with design and process parameter. As a result of this research, we obtained $60{\mu}m$ N-drift layer depth, 791.29 V breakdown voltage, $0.248{\Omega}{\cdot}cm^2$ on resistance and 3.495 V threshold voltage. We will use effectively this device for smart LED driver ICs package.

마이크로LED를 응용한 차세대 생체 치료 소자 개발 (Next-Generation Biomedical Devices via MicroLEDs)

  • 이한얼
    • 한국전기전자재료학회논문지
    • /
    • 제34권4호
    • /
    • pp.221-228
    • /
    • 2021
  • With the advent of the IoT (internet of things) era, there has been discussion on how to efficiently use various information from daily life. In academic and industrial society, various smart devices such as smart watches, smart phones, and smart glasses have been developed and commercialized for narrowing the physical/psychological distance with user information. According to recent developments of smart devices, the contemporary people have desired to check their body information and treat disease by themselves. According to the needs of the time, biological researches by phototherapy/monitoring have been actively conducted. Among various light sources, microLEDs have been spotlighted due to their superior optoelectric properties and stability. In this paper, we would like to review the state-of-the research results on the next-generation biological therapy devices via microLEDs.

자가발전 스마트 액정 윈도우를 위한 염료감응 태양전지 서브 모듈 설계 및 평가 (Design and Evaluation of Dye-Sensitized Solar Cell Submodule for Self-Powered Smart Liquid Crystal Window)

  • 오병윤
    • 한국전기전자재료학회논문지
    • /
    • 제37권5호
    • /
    • pp.494-499
    • /
    • 2024
  • The possibility of a dye-sensitized solar cell (DSSC) submodule was evaluated as an independent power source that can drive a smart liquid crystal window (SLW) that selectively blocks sunlight when electricity is applied. In order to save energy and increase the functionality of buildings, SLW operation was supplied directly from DSSC submodule, rather than connecting to the existing power system and external power sources. It was confirmed that the SLW can control light transmittance through self-generation using the DSSC submodule composed of 6 cells at low light of 2,500 lux. These results imply that there is a high possibility of combining smart windows and DSSCs suitable for window-type building-integrated photovoltaic (BIPV) systems. DSSCs, which can self-generate power in low light, are expected to increase their usability in urban BIPV systems through combination with smart window technology.

CONSTRUCTION MATERIAL MANAGEMENT USING SMART MOBILE COMPUTING

  • Kwang-Pyo Lee;Hyun-Soo Lee;Moonseo Park
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.221-228
    • /
    • 2011
  • As construction works have become larger and more complex, improving productivity by introducing Information Technology (IT) is pursued and more effective construction management is needed in construction industry. In this circumstance, many different kinds of project management system is being introduced, and various IT technologies are applied such as Personal Digital Assistant (PDA), Bar Code, Radio Frequency Identification (RFID), Web Camera, and so on. However, these kinds of technologies might cause re-processing of information and ineffectiveness of project because of lack of real time information processing technology or separation between construction sites and management offices. Meanwhile, these technologies rather decrease the construction productivity except for the data saving and database function. Therefore, this research aims to develop Application that can be applied efficiently for construction material management, by understanding problems of former management system with questionnaires and extracting functions with analysis of requirements. In virtue of the construction material management Application which will be developed in this study, it will be possible to input information automatically, to process and check material information in real time, and to identify the location of necessary material. Then, the problem of separation between construction sites and management offices are solved, and as a result, more efficient management of materials in construction sites will become possible. At the same time, this study will investigate the possibility and applicability of new IT device, Smart Phone to construction sites.

  • PDF

Experimental characterization of a smart material via DIC

  • Casciati, Sara;Bortoluzzi, Daniele;Faravelli, Lucia;Rosadini, Luca
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.255-261
    • /
    • 2022
  • When no extensometer is available in a generic tensile-compression test carried out by a universal testing machine (for instance the model BIONIX from Material Testing Systems (MTS)), the test results only provide the relative displacement between the machine grips. The test does not provide any information on the local behaviour of the material. This contribution presents the potential of an application of Digital Image Correlation (DIC) toward the reconstruction of the behaviour along the specimen. In particular, the authors test a Ni-Ti shape memory alloys (SMA) specimen with emphasis on the coupling of the two measurement techniques.

대학생들의 패션라이프스타일에 따른 웨어러블 스마트 텍스타일 제품의 관심 경향 연구 (Study on the Tendency of Interest of Wearable Textile Products according to College Students' Fashion Life Style)

  • 송하영
    • 패션비즈니스
    • /
    • 제22권1호
    • /
    • pp.41-55
    • /
    • 2018
  • The purpose of this study was to investigate the trends of product design for textile convergence wearable smart textile fashion products according to college students' fashion life style. In this study, we used information obtained from a questionnaire issued to 201 female college students who were 20 years old for the final analysis. The questionnaires were to classify female college students groups according to the fashion life style, to examine characteristics, needs and wants of each group. The survey on the tendency of wearable smart textiles consisted of 22 items about concept and type of smart clothing product, functional material and intelligent material, recognition, preference, purchase intention, purchase factor and brand preference tendency. A total of 201 samples were analyzed by factor analysis, cluster analysis, ANOVA, crosstabs and $x^2-test$ using SPSS package program. 'brand preference oriented type was found to be interested in 'wearable' smart clothing product with monitoring function of bio-signal' and 'high functional fiber and textile product', but the credibility of 'smart clothes that can be worn and smart textile products to be useful in modern life' was low. 'fashionable individuality oriented' type showed interest in 'smart clothing and smart product', 'intelligent fiber' and 'wearable smart clothing product with monitoring function of bio-signal', but the preferences of 'light emitting fiber products' was low. 'practically purchasing-oriented' type was very interested in 'high-functional fiber and its textile products', but had inadequate knowledge on 'smart clothing and smart textile product' and showed low interest. Despite the fact that 'wearable smart clothing and smart textile products' are expensive, they were willing to purchase considering practicality and sophisticated style.

A Study of 100 tonf Tensile Load for SMART Mooring Line Monitoring System Considering Polymer Fiber Creep Characteristics

  • Chung, Joseph Chul;Lee, Michael Myung-Sub;Kang, Sung Ho
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.266-272
    • /
    • 2021
  • Mooring systems are among the most important elements employed to control the motion of floating offshore structures on the sea. Considering the use of polymer material, a new method is proposed to address the creep characteristics rather than the method of using a tension load cell for measuring the tension of the mooring line. This study uses a synthetic mooring rope made from a polymer material, which usually consists of three parts: center, eye, and splice, and which makes a joint for two successive ropes. We integrate the optical sensor into the synthetic mooring ropes to measure the rope tension. The different structure of the mooring line in the longitudinal direction can be used to measure the loads with the entire mooring configuration in series, which can be defined as SMART (Smart Mooring and Riser Truncation) mooring. To determine the characteristics of the basic SMART mooring, a SMART mooring with a diameter of 3 mm made of three different polymer materials is observed to change the wavelength that responds as the length changes. By performing the longitudinal tension experiment using three different SMART moorings, it was confirmed that there were linear wavelength changes in the response characteristics of the 3-mm-diameter SMART moorings. A 54-mm-diameter SMART mooring is produced to measure the response of longitudinal tension on the center, eye, and splice of the mooring, and a longitudinal tension of 100 t in step-by-step applied for the Maintained Test and Fatigue Cycle Test is conducted. By performing a longitudinal tension experiment, wavelength changes were detected in the center, eye, and splice position of the SMART moorings. The results obtained from each part of the installed sensors indicated a different strain measurement depending on the position of the SMART moorings. The variation of the strain measurement with the position was more than twice the result of the difference measurement, while the applied external load increased step-by-step. It appears that there is a correlation with an externally generated longitudinal tensional force depending on the cross-sectional area of each part of the SMART mooring.

PV 일체형 차세대 스마트 윈도우 기술개발 동향 (Technology Development Trends of Self-Powered Next Generation Smart Windows)

  • 변선호
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.753-764
    • /
    • 2015
  • Among several types of energy saving smart window technologies, the leader, the dynamic EC (electrochromic) window one needs integrated PV (photovoltaics), to minimize expensive electrical wiring as well as to obviate the need for external energy. Self-powered smart windows were reviewed according to PV types used. DSSCs (dye sensitized solar cells) were found to be compatible with EC cells, to have several categories of next generation smart windows such as PECCs (photoelectrochromic cells), PVCCs (photovoltachromic cells), EC polymer PECCs. In addition silicon solar cells and third generation solar cells were investigated. They are summarized in a table showing their advantages and disadvantages respectively for a fast comparison. The strategy to expedite the commercialization of these next generation smart windows includes developing retrofit smart window coverings for use on flexible polymer substrates adhered to the inside surface of a window and easily replaced after use for upto 10 years.