DOI QR코드

DOI QR Code

Design and Evaluation of Dye-Sensitized Solar Cell Submodule for Self-Powered Smart Liquid Crystal Window

자가발전 스마트 액정 윈도우를 위한 염료감응 태양전지 서브 모듈 설계 및 평가

  • Byeong-Yun Oh (Research and Development Department, Cheomdanlab Inc.)
  • 오병윤 ((주)첨단랩 기업부설연구소)
  • Received : 2024.04.02
  • Accepted : 2024.04.17
  • Published : 2024.09.01

Abstract

The possibility of a dye-sensitized solar cell (DSSC) submodule was evaluated as an independent power source that can drive a smart liquid crystal window (SLW) that selectively blocks sunlight when electricity is applied. In order to save energy and increase the functionality of buildings, SLW operation was supplied directly from DSSC submodule, rather than connecting to the existing power system and external power sources. It was confirmed that the SLW can control light transmittance through self-generation using the DSSC submodule composed of 6 cells at low light of 2,500 lux. These results imply that there is a high possibility of combining smart windows and DSSCs suitable for window-type building-integrated photovoltaic (BIPV) systems. DSSCs, which can self-generate power in low light, are expected to increase their usability in urban BIPV systems through combination with smart window technology.

Keywords

Acknowledgement

이 논문은 2021년 산업통상자원부의 재원으로 한국산업단지공단의 산업집적지경쟁력강화 사업의 지원을 받아 수행한 연구 결과임(과제번호: IRGJ2104). 스마트 액정 윈도우 제작에 도움을 주신 한국생산기술연구원 허기석 수석님께 감사드리며, 염료감응 태양전지 에너지 변환효율측정에 도움을 주신 한국광기술원 기현철 책임님께 감사드립니다.

References

  1. S. Wu, H. Sun, M. Duan, H. Mao, Y. Wu, H. Zhao, and B. Lin, Cell Rep. Phys. Sci., 4, 101370 (2023). doi: https://doi.org/10.1016/j.xcrp.2023.101370
  2. M. N. Mustafa, M.A.A.M. Abdah, A. Numan, A. Moreno-Rangel, A. Radwan, and M. Khalid, Renewable Sustainable Energy Rev., 181, 113355 (2023). doi: https://doi.org/10.1016/j.rser.2023.113355
  3. Q. Lin, Y. Zhang, A. V. Mieghem, Y. C. Chen, N. Yu, Y. Yang, and H. Yin, Energy Build., 223, 110173 (2020). doi: https://doi.org/10.1016/j.enbuild.2020.110173
  4. K. S. Lee, J. W. Lim, M. Kang, K. H. Kim, and H. Ryu, Electron. Telecommun. Trends, 34, 36 (2019). doi: https://doi.org/10.22648/ETRI.2019.J.340504
  5. S. H. Pyun, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 753 (2015). doi: https://doi.org/10.4313/JKEM.2015.28.12.753
  6. J. Barichello, P. Mariani, L. Vesce, D. Spadaro, I. Citro, F. Matteocci, A. Bartolotta, A. D. Carlo, and G. Calogero, J. Mater. Chem. C, 12, 2317 (2024). doi: https://doi.org/10.1039/D3TC03220E
  7. M. C. Sil, L. S. Chen, C. W. Lai, Y. H. Lee, C. C. Chang, and C. M. Chen, J. Power Sources, 479, 229095 (2020). doi: https://doi.org/10.1016/j.jpowsour.2020.229095
  8. H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, Light: Sci. Appl., 7, 17168 (2018). doi: https://doi.org/10.1038/lsa.2017.168
  9. J. Jung, H. B. Park, H. Y. Jung, S. E. Jung, S. G. Kim, T. H. Kim, Y. J. Lim, B. C. Ku, M. S. Kim, and S. H. Lee, J. Inf. Disp., 25, 121 (2024). doi: https://doi.org/10.1080/15980316.2023.2281224
  10. A. Fakharuddin, R. Jose, T. M. Brown, F. Fabregat-Santiagoc, and J. Bisquert, Energy Environ. Sci., 7, 3952 (2014). doi: https://doi.org/10.1039/c4ee01724b
  11. B. Y. Oh, S. K. Kim, and D. G. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 298 (2013). doi: https://doi.org/10.4313/JKEM.2013.26.4.298
  12. M. Kokkonen, P. Talebi, J. Zhou, S. Asgari, S. A. Soomro, F. Elsehrawy, J. Halme, S. Ahmad, A. Hagfeldt, and S. G. Hashmi, J. Mater. Chem. A, 9, 10527 (2021). doi: https://doi.org/10.1039/D1TA00690H