DOI QR코드

DOI QR Code

Technology Development Trends of Self-Powered Next Generation Smart Windows

PV 일체형 차세대 스마트 윈도우 기술개발 동향

  • Pyun, Sun Ho (Korea Institute of Science and Technology Information, ReSEAT Program)
  • 변선호 (한국과학기술정보연구원 ReSEAT 프로그램)
  • Received : 2015.10.02
  • Accepted : 2015.11.12
  • Published : 2015.12.01

Abstract

Among several types of energy saving smart window technologies, the leader, the dynamic EC (electrochromic) window one needs integrated PV (photovoltaics), to minimize expensive electrical wiring as well as to obviate the need for external energy. Self-powered smart windows were reviewed according to PV types used. DSSCs (dye sensitized solar cells) were found to be compatible with EC cells, to have several categories of next generation smart windows such as PECCs (photoelectrochromic cells), PVCCs (photovoltachromic cells), EC polymer PECCs. In addition silicon solar cells and third generation solar cells were investigated. They are summarized in a table showing their advantages and disadvantages respectively for a fast comparison. The strategy to expedite the commercialization of these next generation smart windows includes developing retrofit smart window coverings for use on flexible polymer substrates adhered to the inside surface of a window and easily replaced after use for upto 10 years.

Keywords

References

  1. E. Cuce and S. B. Riffat, Renew. Sust. Energ. Rev., 41, 695 (2015). https://doi.org/10.1016/j.rser.2014.08.084
  2. Efficient Windows Collaborative, Low-E Coatings, http://www.commercialwindows.org/lowe.php. (2015).
  3. K. Sawyer, Building Technologies Office, U. S. Department of Energy, Windows and Building Envelope Research and Development: Roadmap for Emerging Technologies, 30/74 (2014).
  4. K. Sawyer, Building Technologies Office, U. S. Department of Energy, R&D Roadmap for Emerging Window and Building Envelope Technologies, 30 (2014).
  5. S. K. Deb, S. H. Lee, C. E. Tracy, J. R. Pitts, B. A. Gregg, and H. M. Branz, Electrochimica Acta, 46, 2125 (2001). [DOI: http://dx.doi.org/10.1016/S0013-4686(01)00390-5]
  6. C. G. Granqvist, Thin Solid Films, 564, 1 (2014). [DOI: http://dx.doi.org/10.1016/j.tsf.2014.02.002]
  7. S. S. Kalagi, S. S. Malib, D. S. Dalavib, A. I. Inamdarc, H. S. Im, and P. S. Patil, Synthetic Met., 161, 1105 (2011). [DOI: http://dx.doi.org/10.1016/j.synthmet.2011.03.028]
  8. S. J. You and Y. E. Sung, NICE, 26, 519 (2008).
  9. Smart Windows: Energy Efficiency with a View, http://www.nrel.gov/news/features/feature_detail.cfm/feature_id=1555 (2010).
  10. A. Cannavale, M. Manca, L. D. Marco, R. Grisorio, S. Carallo, G. P. Suranna, and G. Gigli, ACS Appl. Mater. Interfaces, 6, 2415 (2014). [DOI: http://dx.doi.org/10.1021/am404800m]
  11. D. K. Benson and H. M. Branz, Sol. Energ. Mat. Sol. C, 39, 203 (1995). [DOI: http://dx.doi.org/10.1016/0927-0248(95)00041-0]
  12. J. N. Bullock, C. Bechinger, D. K. Benson, and H. M. Branz, J. Non-Cryst. Solids, 198, 1163 (1996). [DOI: http://dx.doi.org/10.1016/0022-3093(96)00105-6]
  13. L. M. Huang, C. W. Hu, H. C. Liu, C. Y. Hsu, C. H. Chen, and K. C. Ho, Sol. Energ. Mat. Sol. C., 99, 154 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.036]
  14. C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, and B. A. Gregg, Nature, 383, 608 (1996). [DOI: http://dx.doi.org/10.1038/383608a0]
  15. A. Hauch, A. Georg, S. Baumgartner, U. O. Krasovec, and B. Orel, Electrochim. Acta, 46, 2131 (2001). [DOI: http://dx.doi.org/10.1016/S0013-4686(01)00391-7]
  16. U. O. Krasovec, A. Georg, A. Georg, Volker Wittwer, J. Luther, M. Topic, Sol Energ Mat Sol C, 84, 369 (2004). [DOI: http://dx.doi.org/10.1016/j.solmat.2004.01.043]
  17. U. O. Kra?ovec, Andre. Georg, Anne. Georg, M. Topic, and G. Drazic, JSST, 36, 45 (2005).
  18. A. Georg and U. O. Krasovec, Thin Solid Films, 502, 246 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.07.291]
  19. G. D. Filpo, S. Mormile, F. P. Nicoletta, and G. Chidichimo, J. Power Sources, 195, 4365 (2010). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2010.01.037]
  20. G. Leftheriotis, G. Syrrokostas, and P. Yianoulis, Sol. Energ. Mat. Sol. C, 96, 86 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.09.014]
  21. J. J. Wu, M. D. Hsieh, W. P Liao, W. T. Wu, and J. S. Chen, ACS Nano, 3, 2297 (2009). [DOI: http://dx.doi.org/10.1021/nn900428s]
  22. A. Cannavale, M. Manca, F. Malara, L. D. Marco, R. Cingolani, and G. Gigli, Energy Environ. Sci., 4, 2567 (2011). [DOI: http://dx.doi.org/10.1039/c1ee01231b]
  23. A. Cannavale, M. Manca, L. D. Marco, R. Grisorio, S. Carallo, G. P. Suranna, and G. Gigli, ACS Appl. Mater. Interfaces, 6, 2415 (2014). DOI: http://dx.doi.org/10.1021/am404800m]
  24. F. Malara, A. Cannavale, and G. Gigli, Proc. of Photovoltaics: Res. Appl., 23, 290 (2015). [DOI: http://dx.doi.org/10.1002/pip.2422]
  25. Y. Li, J. Hagen, and D. Haarer, Synthetic Met., 94, 273 (1998). [DOI: http://dx.doi.org/10.1016/S0379-6779(98)00013-7]
  26. C. Y. Hsu, K. M. Lee, J. H. Huang, K.R.J. Thomas, J. T. Lin, K. C. Ho, J. Power Sources, 185, 1505 (2008). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2008.09.031]
  27. S. Yang, J. Zheng, M. Li, and C. Xu, Sol. Energ. Mat. Sol. C, 97, 186 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.09.038]
  28. K. Wang, H. Wu, Y. Meng, Y. Zhang, and Z. Wei, Energy Environ. Sci., 5, 8384 (2012). [DOI: http://dx.doi.org/10.1039/c2ee21643d]
  29. C. H. Wu, C. Y. Hsu, K. C. Huang, P. C. Nien, J. T. Lin, and K. C. Ho, Sol. Energ. Mat. Sol. C, 99, 148 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.033]
  30. E. Amasawa, N. Sasagawa, M. Kimura, and M. Taya, Adv. Energy. Mater., 4, 1400379 (2014). [DOI: http://dx.doi.org/10.1002/aenm.201400379]
  31. B. N. Reddy, R. Mukkabla, M. Deepa, and P. Ghosal, RSC Adv., 5, 31422 (2015). [DOI: http://dx.doi.org/10.1039/C5RA05015D]
  32. R. Sydam, R. K. Kokal, and M. Deepa, ChemPhysChem, 16, 1042 (2015) [DOI: http://dx.doi.org/10.1002/cphc.201402862]
  33. K. S. Ahn, S. J. Yoo, M. S. Kang, J. W. Lee, and Y. E. Sung, J. Power Sources, 168, 533 (2007). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006.12.114]
  34. K. F. Chen, C. H. Liu, C. K. Hsieh, C. L. Lin, H. K. Huang, C. H. Tsai, and F. R. Chen, J. Power Sources, 247, 939 (2014). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2013.08.103]
  35. R. R. Lunt and V. Bulovic, Appl. Phys. Lett., 98, 113305-1 (2011). [DOI: http://dx.doi.org/10.1063/1.3567516]
  36. A. L. Dyer, R. H. Bulloch, Y. Zhou, B. Kippelen, J. R. Reynolds, and F. Zhang, Adv. Mater., 26, 4895 (2014). [DOI: http://dx.doi.org/10.1002/adma.201401400]
  37. A. Cannavale, G. E. Eperon, P. Cossari, A. Abate, H. J. Snaith, and G. Gigli, Energy Environ. Sci., 8, 1578 (2015). [DOI: http://dx.doi.org/10.1039/C5EE00896D]
  38. G. E. Eperon, V. M. Burlakov, A. Goriely, and H. J. Snaith, ACS Nano, 8, 591 (2014). [DOI: http://dx.doi.org/10.1021/nn4052309]