• Title/Summary/Keyword: Smart Controls

Search Result 190, Processing Time 0.021 seconds

Operation limits analysis of PW206C turboshaft engine In manual mode (PW206C 터보축 엔진의 수동운용범위 분석)

  • Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.339-342
    • /
    • 2007
  • The power control system of Smart UAV is similar to the propeller pitch governing concept of turboprop aircraft. The pilot inputs the engine power directly and the pitch governor controls the propeller pitch to maintain the propeller RPM. The manual back-up system of PW206C engine is used for the engine power control of Smart UAV. Engine performance estimation program is used to predict the control range of power lever arm(PLA) angle according to the variation of flight altitude and speed. These data provide a guide for the engine control in manual mode operation.

  • PDF

The Design and Implementation of a Door-Lock System using a smart phone on Near Field Communication environments (비접촉식 근거리 무선통신 환경에서 스마트폰을 이용한 도어락 시스템의 설계 및 구현)

  • Kim, Dong-Hyun;Ban, Chae-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1217-1224
    • /
    • 2015
  • The doorlock using buttons has been widely used since it does not exploit the physical key and has much functions though it is cheap. However, the doorlock has problems where it is easy to forget the secret number since the user has to remember the number and difficult to keep secure when the one secret number has been used for a long time. In this paper, we propose the doorlock system using the near field communication. The proposed system controls the open and close of the doorlock using user data acquired by the near field communication tag, The implemented doorlock system has the benefit to control the doorlock without a secret number.

Security System for Location-Based Services (위치 기반 서비스의 보안 시스템)

  • Park, Chan Hyun;Lee, Jaeheung;Park, Yongsu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.161-164
    • /
    • 2012
  • Location-Based Services(LBS) are a general class of computer program-level services used to include specific controls for location data as control features in computer programs. In recent years, the number of smart device(Smart Phone, Tablet PC etc.) users growth was exponential. For that reason, using rate of LBS has drastically increased. The most important thing of LBS is security. Personal information, especially private information likes illness, should not be disclosed. In this paper shows how to attack LBS and how to defense it.

  • PDF

A New Approach to Improve Induction Motor Performance in Light-Load Conditions

  • Hesari, Sadegh;Hoseini, Aghil
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1195-1202
    • /
    • 2017
  • Induction motors often reach their maximum efficiency at the nominal load. In most applications, the machine load is not equal to the nominal load, thus reduces the motor efficiency and turns a greater percent of power into loss. In this paper, the induction motor control problem has been investigated to reduce the system losses. The Field Oriented Control method (FOC) has been employed in this paper. In this research, the mathematical equations related to system losses are calculated in relation to torque and speed, and then the q- and d-axis are summarized according to the current components. After that, the proposed method is applied along with d- and q-axis. In the recent three decades, many techniques have been suggested to improve the induction motor performance using smart and non-smart methods. In this paper, a new PSO-Fuzzy method have used in real time. The fuzzy logic method serves as speed controller in q-axis and PSO algorithm controls the optimum flux in d-axis. It will be proved that the use of this combined method will lead to a significant improvement in motor efficiency.

An Efficient IoT Platform for Fog Computing (포그 컴퓨팅을 위한 효율적인 IoT 플랫폼)

  • Lee, Han Sol;Choi, Jeong Woo;Byeon, Gi Beom;Hong, Ji Man
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • With IoT device technology developments, such devices now can perceive the surrounding environment and operate upon the condition, but a method for efficiently processing an enormous amount of IoT device data is required. The existing cloud computing has a transmission delay problem due to load and distance. Fog Computing, an environment to control IoT devices, therefore, emerged to solve this problem. In Fog Computing, IoT devices are located close to each other to solve the shortcomings of the cloud system. While many earlier studies on Fog Computing for IoT mainly focus on its structure and framework, we would like to propose an integrated Fog Computing platform that monitors, analyzes, and controls IoT devices.

A study on Ontology Modelling for Autonomous Context Decision Logic in Vertical Farming (수직 농업 자율 컨텍스 결정을 위한 온톨로지 모델링에 관한 연구)

  • Young Goun Jin;Won Goo Lee
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.72-79
    • /
    • 2024
  • Vertical farming is one of the important solutions to overcome future food and population problems. However, underdeveloped countries can't afford due to high initial investment costs and technical huddles. To solve this problem, it is necessary to formalize the vertical farming area using ontology. In this paper, we present an ontology that includes various cultivation methods of vertical farming, connects sensors and actuates according to the methods, and recognizes and controls the cultivation environment context of the selected vertical fanning, we expect to be able to autonomously make control decisions about the context by analyzing the environmental context that is important for perceived vertical cultivation using the logical reasoning function of ontology.

Implementation of Smart Metering System Based on Deep Learning (딥 러닝 기반 스마트 미터기 구현)

  • Sun, Young Ghyu;Kim, Soo Hyun;Lee, Dong Gu;Park, Sang Hoo;Sim, Issac;Hwang, Yu Min;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.829-835
    • /
    • 2018
  • Recently, studies have been actively conducted to reduce spare power that is unnecessarily generated or wasted in existing power systems and to improve energy use efficiency. In this study, smart meter, which is one of the element technologies of smart grid, is implemented to improve the efficiency of energy use by controlling power of electric devices, and predicting trends of energy usage based on deep learning. We propose and develop an algorithm that controls the power of the electric devices by comparing the predicted power consumption with the real-time power consumption. To verify the performance of the proposed smart meter based on the deep running, we constructed the actual power consumption environment and obtained the power usage data in real time, and predicted the power consumption based on the deep learning model. We confirmed that the unnecessary power consumption can be reduced and the energy use efficiency increases through the proposed deep learning-based smart meter.

Contract-based Access Control Method for NFT Use Rights

  • Jeong, Yoonsung;Ko, Deokyoon;Seo, Jungwon;Park, Sooyong;Kim, Seong-Jin;Kim, Bum-Soo;Kim, Do-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.1-11
    • /
    • 2022
  • In this paper, we propose an NFT(Non-Fungible Token)-based access control method for safely sharing data between users in blockchain environment. Since all data stored in the blockchain can be accessed by anyone due to the nature of the technology, it is necessary to control access except for authorized users when sharing sensitive data. For that, we generate each data as NFT and controls access to the data through the smart contract. In addition, in order to overcome the limitations of single ownership of the existing NFT, we separated the NFT into ownership and use rights, so that data can be safely shared between users. Ownership is represented as an original NFT, use rights is represented as a copied NFT, and all data generated as NFT is encrypted and uploaded, so data can be shared only through the smart contract with access control. To verify this approach, we set up a hypothetical scenario called Building Information Modeling (BIM) data trade, and deployed a smart contract that satisfies 32 function call scenarios that require access control. Also, we evaluated the stability in consideration of the possibility of decryption through brute-force attack. Through our approach, we confirmed that the data can be safely shared between users in blockchain environment.

A Location-based Green Home Service using a Smart Phone (스마트폰을 활용한 위치 기반 그린 홈 서비스)

  • Choi, Jin-Yeop;Jeon, Byoung-Chan;Lee, Sang-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.89-97
    • /
    • 2012
  • In recent years, efficient energy management technologies are required, as environmental problems have emerged worldwide. In response to this, smart home services focused on efficient energy management technology seems to be emerging. And the integration of technology of user-oriented real-time energy monitoring and control systems is required. In this paper, we present a location-based green home service using smart phones for efficient energy management in a house. We design a green home network system to apply the green home service, and implement an integrated gateway system which connects and controls each appliance in a house. We develop appliance control services and indoor location services on smart phones, and determine whether user's occupancy of each room by measuring the location according to the variation of signal strength. In order to evaluate the performance of the energy savings, we have set up the scenarios of energy usage pattern and have compared the energy variation resulting from the application of the indoor location services with smart meters. A comparison of energy usage demonstrated that the energy saving of a house with the proposed location-based green home service was down up to 30%.

Development of Equipment Control System based on DB Access Method for Industrial IoT (Industrial IoT를 위한 데이터베이스 접근 기반 장비 제어 시스템 개발)

  • Cho, Kyoung-woo;Jeon, Min-ho;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1142-1147
    • /
    • 2016
  • Recently, IoT(Internet of Things) has been extensively researching to provide intelligent services by fusing ICT. Especially with the advent of Germany's Industry 4.0, it is emphasized the importance of the industrial IoT to maximize the production capacity. Accordingly, a lot of efforts to spread the smart factory base of industrial IoT have continued domestically as well as abroad. But the current smart factory systems have controlled equipment using the data declared in the embedded systems. Therefore, it is difficult to control environment that lots of equipment is installed. In this paper, we proposed equipment control system based on data base access method for industrial IoT. This method controls the equipment using data base from parameter of equipment. Through experiments that the system apply to mold shot system with a number of variables, it is shown that the proposed method can efficiently control a number of devices.