• Title/Summary/Keyword: Small-scale Experiments

Search Result 307, Processing Time 0.04 seconds

GOTHIC-3D APPLICABILITY TO HYDROGEN COMBUSTION ANALYSIS

  • LEE JUNG-JAE;LEE JIN-YONG;PARK GOON-CHERL;LEE BYUNG-CHUL;YOO HOJONG;KIM HYEONG-TAEK;OH SEUNG-JONG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.265-272
    • /
    • 2005
  • Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling oflarge- and small-scale facilities was introduced through sensitivity studies on cell size and bum modeling parameters. Use of a turbulent bum option of the eddy dissipation concept enabled scale-free applications. Lowering the bum parameter values for the flame thickness and the bum temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default bum modeling parameters for large-scale facilities. However, the code needs further modifications of its bum modeling parameters to be applied to either small-scale facilities or extremely fast transients.

Combustion characteristics in small combustion chamber that has high surface to volume ratio (고 표면적-체적 비를 가지는 소형 연소실 환경에서의 연소특성)

  • Lee, Dae-Hoon;Choi, Kwon-Hyoung;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.212-216
    • /
    • 2000
  • Combustion phenomenon in scale-downed combustor is investigated. As the combustor volume decreases surface to volume ratio increases. for increased surface to volume ratio means increased heat loss and this increased heat loss affects reaction in combustion chamber. Plastic mini combustor is made. Stoichiometricaly premixed Hydrogen I air gas is used as fuel. Initial chamber pressure and chamber size are varied and the effects are evaluated. Peak pressure decreases with the decrease in chamber height. As initial chamber pressure decreases peak pressure decreases. And this change is more important than scale down effect till the chamber height of 1mm. With this result and further information following the experiments design parameter for micro engine can be established.

  • PDF

Investigation of cause and magnitude of scale effect occurring in model experiments of fishing nets (그물어구의 모형 실험시에 발생하는 축척비 영향의 원인 및 크기 조사)

  • Kim, Dae-An
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In order to investigate the cause and magnitude of scale effect occurring in the model experiments of fishing nets, five pairs of Nylon pyramid nets and one pair of PE ones in which all the two nets paired were equal each other in the factors determining their flow resistance, i. e., the ratio d/l of diameter d to length l of bars, the angle f between two adjacent bars, the attack angle q of nettings to the water flow, and the wall area S of nets, and different in the values of d and l were prepared. Then, the nets were attached to the circular steel frame alternately and their flow resistances with shapes in water were measured on the sea ascribing no turbulent flows by using the tension meter made of a block bearing for the experiment. All the Nylon nets were spreads out easily in water to form a circular cone at relatively low velocity of water and showed the resistance smaller a little in the nets with larger d and l than them with smaller d and l, because the filtration of water through meshes become easier in nets especially with larger l. But PE nettings were not spread out sufficiently on account of their small flexibility and showed higher resistance especially in them with thicker twines. Therefore, the difference in bar length or mesh size and flexibility of nettings between prototype and model nets are regarded to become factors ascribing scale effect. Especially the influence of the difference in mesh size may become large significantly in actual model experiments because the mesh size of model nets is decided at much larger value than that given by scale ratio and so the difference of mesh size between the two nets become much larger than that between nets used in this experiment.

Experimental assessment of thermal radiation effects on containment atmospheres with varying steam content

  • R. Kapulla;S. Paranjape;U. Doll;E. Kirkby;D. Paladino
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4348-4358
    • /
    • 2022
  • The thermal-hydraulics phenomena in a containment during an accident will necessarily include radiative heat transfer (i) within the gas mixture due to the high radiative absorption and emission of steam and (ii) between the gas mixture and the surrounding structures. The analysis of some previous PANDA experiments (PSI, Switzerland) demonstrated the importance of the proper modelling of radiation for the benefit of numerical simulations. These results together with dedicated scoping calculations conducted for the present experiments indicated that the radiative heat transfer is considerable, even for a very low amount of steam (≈2%). The H2P2 series conducted in the large-scale PANDA facility at the Paul-Scherrer-Institut (PSI) in the framework of the OECD/NEA HYMERES-2 project is intended to enhance the understanding of thermal radiation phenomena and to provide a benchmark for corresponding numerical simulations. Thus, the test matrix was tailored around the two opposite extremes: either gas compositions with small steam content such that radiative heat transfer phenomena can be neglected. Or gas mixtures containing larger amounts of steam, so that radiative heat transfer is expected to play a dominant role. The H2P2 series consists of 5 experiments designed to isolate the radiation phenomena from convective and diffusive effects as much as possible. One vessel with a diameter of 4 m and a height of 8 m was preconditioned with different mixtures of air / steam at room and elevated temperatures. This was followed by the build-up of a stable helium stratification at constant pressure in the upper part of the vessel. After that, helium was injected from the top into the vessel which leads to an increase of the vessel pressure and a corresponding elevation-dependent and transient rise of the gas temperature. It is shown that even the addition of small amounts of steam in the initial gas atmosphere considerably impacts the radiative heat transport throughout all phases of the experiments and markedly influences i) the monitored gas peak temperature, ii) the temperature history during the compression and iii) the following relaxation phase after the compression was stopped. These PANDA experiments are the first of its kind conducted in a large scale thermal-hydraulic facility.

A Study on Manufacturing and Experimental Techniques for the 1/5th Scale Model of Precast Concrete Large Panel Structure (프리캐스트 콘크리트 대형판 구조물의 1/5 축소모델 제작 및 실험기법 연구)

  • 김상규;이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.198-203
    • /
    • 1995
  • The objective of this study is to provide the information on the techniques of manufacturing and experiment in small scale modeling of precast concrete(P.C.)large panel structures. The adopted scale was 1/5th 4types of experiments were performed : material tests for model concrete and model reinforcement, compressive test of horizontal joint, shear test of vertical joint and cyclic static test of 2-story subassemblage structure. Based on the experimental results, the following conclusions are drawn: (1)Model concrete may have in general larger compressive strength than expected. (2) Model reinforcement can show less ductility if the annealing processes were performed without using vaccuum tube. (3) Failure modes of horizontal and vertical joints were almost same for both prototype and model. But the strength of model appears to be higher than required by similitude law. (4)Hysteretic behavior of 1/5 scale subassemblage model can be made quite similar to prototype's if the ductility of model reinforcement and compressive strength of model concrete could be representative of those of prototype.

  • PDF

Design of small impact test device for concrete panels subject to high speed collision

  • Kim, Sanghee;Jeong, Seung Yong;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • Five key items were used to create an economical and physically small impact test device for concrete panels subject to high speed collision: an air-compressive system, carbon steel pipe, solenoid valve, carrier and carrier-blocking, and velocity measurement device. The impact test device developed can launch a 20 mm steel spherical projectile at over 200 m/s with measured impact and/or residual velocity. Purpose for development was to conduct preliminary materials tests, prior to large-scale collision experiments. In this paper, the design process of the small impact test device was discussed in detail.

A Novel Calibration Method Research of the Scale Factor for the All-optical Atomic Spin Inertial Measurement Device

  • Zou, Sheng;Zhang, Hong;Chen, Xi-yuan;Chen, Yao;Fang, Jian-cheng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.415-420
    • /
    • 2015
  • A novel method to measure the scale factor for the all-optical atomic spin inertial measurement device (ASIMD) is demonstrated in this paper. The method can realize the calibration of the scale factor by a self-consistent method with small errors in the quiescent state. At first, the matured IMU (inertial measurement unit) device was fixed on an optical platform together with the ASIMD, and it has been used to calibrate the scale factor for the ASIMD. The results show that there were some errors causing the inaccuracy of the experiment. By the comparative analysis of theory and experiment, the ASIMD was unable to keep pace with the IMU. Considering the characteristics of the ASIMD, the mismatch between the driven frequency of the optical platform and the bandwidth of the ASIMD was the major reason. An all-optical atomic spin magnetometer was set up at first. The sensitivity of the magnetometer is ultra-high, and it can be used to detect the magnetization of spin-polarized noble gas. The gyromagnetic ratio of the noble gas is a physical constant, and it has already been measured accurately. So a novel calibration method for scale factor based on the gyromagnetic ratio has been presented. The relevant theoretical analysis and experiments have been implemented. The results showed that the scale factor of the device was $7.272V/^{\circ}/s$ by multi-group experiments with the maximum error value 0.49%.

Examining Velocity Estimation Equations of Debris Flow Using Small-scaled Flume Experiments (소형 수로실험을 통한 토석류 유동속도 추정식 평가)

  • Eu, Song;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.424-430
    • /
    • 2017
  • With its rapid velocity and wide deposition, debris flow is a natural disaster that causes loss of human life and destruction of facility. To design effective debris barriers, impact force of debris flow should be first considered. Debris flow velocity is one of the key features to estimate the impact force of debris flow. In this study, we conducted small-scale flume experiments to analyze flow characteristics of debris flow, and determine flow resistance coefficients with different slope gradients and sediment mixtures. Flow velocity significantly varied with flume slope and mixture type. Debris flow depth decreased as slope increased, but difference in depth between sediment mixtures was not significant. Among flow resistance coefficients, Chezy coefficient ($C_1$) showed not only relatively highest goodness of fit, but also constant value ($20.19m^{-1/2}\;s^{-1}$) regardless the scale of debris flow events. The overall results suggested that $C_1$ can be most appropriately used to estimate flow velocity, the key factor of assessing impact force, in wide range of debris flow scale.

Study of scale on small polyimide combustor performance (폴리이미드 재질의 소형 플라스틱 연소기의 크기에 따른 특성 연구)

  • Sin, Kang-Chang;Huh, Hwan-Il;Ronney, Paul D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.45-48
    • /
    • 2008
  • Micro power generators have been studying to provide high power that micro systems require. Micro power generators need micro combustor. Swiss-roll combustor has been studied about scale, geometry, material. From previous study experiments have shown that swiss-roll combustors require thin walls with low thermal conductivity for maximum performance at small scales. In this work, polyimide combustors with low thermal conductivity and thin thickness are built and tested.

  • PDF

Evaluation and CFD Modelling of Flow behind Livestock Ventilation Fan for Small-Scale Wind Power Generation (축사 환기팬 후류의 풍에너지 평가 및 기류 형상의 전산유체역학 모델링)

  • Hong, Se-Woon;Lee, In-Bok;Seo, Il-Hwan;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Hwang, Hyun-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.79-89
    • /
    • 2012
  • The objectives of this paper were to evaluate the wind flow behind the livestock ventilation fan for small-scale wind power generation and to make flow profiles of imaginary ventilation fan for future simulation works. The field experiments using typical 50-inch fan indicated that the wind flow behind the ventilation fan had a good possibility of power generation with its high and steady wind speeds up to a distance of 2 m. The expected electricity yield was almost 101~369 W with a small (0.8 m radius) wind turbine. The decline of ventilation fan performance caused by the obstacle was also not significant with about 4 % from a distance of 2 m. The flow profiles for the computational fluid dynamics (CFD) simulation was created by combining the direction vectors analyzed from tuft visualization test and the flow predicted by the rotating fan modeling. The flow profiles are expected to provide an efficient saving of computational time and cost to design a better wind turbine system in future works.