DOI QR코드

DOI QR Code

Examining Velocity Estimation Equations of Debris Flow Using Small-scaled Flume Experiments

소형 수로실험을 통한 토석류 유동속도 추정식 평가

  • Eu, Song (Department of Forest Sciences, Seoul National University) ;
  • Im, Sangjun (Department of Forest Sciences, Seoul National University)
  • 유송 (서울대학교 산림과학부) ;
  • 임상준 (서울대학교 산림과학부)
  • Received : 2017.10.18
  • Accepted : 2017.11.20
  • Published : 2017.12.31

Abstract

With its rapid velocity and wide deposition, debris flow is a natural disaster that causes loss of human life and destruction of facility. To design effective debris barriers, impact force of debris flow should be first considered. Debris flow velocity is one of the key features to estimate the impact force of debris flow. In this study, we conducted small-scale flume experiments to analyze flow characteristics of debris flow, and determine flow resistance coefficients with different slope gradients and sediment mixtures. Flow velocity significantly varied with flume slope and mixture type. Debris flow depth decreased as slope increased, but difference in depth between sediment mixtures was not significant. Among flow resistance coefficients, Chezy coefficient ($C_1$) showed not only relatively highest goodness of fit, but also constant value ($20.19m^{-1/2}\;s^{-1}$) regardless the scale of debris flow events. The overall results suggested that $C_1$ can be most appropriately used to estimate flow velocity, the key factor of assessing impact force, in wide range of debris flow scale.

토석류는 빠른 속도와 넓은 퇴적 범위 등으로 인명 및 재산 피해를 야기하는 산지토사재해이다. 토석류 피해 저감을 목적으로 효과적인 사방 구조물을 설계하기 위해서는 토석류의 충격력을 정확하게 산정하여야 한다. 토석류의 유동속도는 토석류 충격력을 추정하는데 중요한 요인이다. 따라서 이 연구에서는 소형 수로실험을 통해 수로경사 및 시료 조건에 따른 토석류의 유동특성을 실험적으로 분석하고, 토석류 유동속도 추정식의 유동저항계수를 추정하였다. 유동속도는 수로의 경사조건 및 시료의 점성조건에 유의한 변화를 보였다. 유동깊이는 수로경사에 대해서 유의한 차이를 보였으나 시료의 점성변화에 대해서는 유의한 변화를 보이지 않았다. 유동저항계수를 계산하여 분석한 결과, Voellmy flow 모형의 Chezy 상수($C_1$)가 상대적으로 수로실험 결과를 잘 재현하였다. 또한, 실제 토석류 사례와의 비교 결과, 유동깊이에 관계없이 일정한 값($20.19m^{-1/2}\;s^{-1}$)을 보였다. 따라서, $C_1$은 다양한 발생규모의 토석류에 대한 유동속도 추정에 잘 활용될 수 있을 것으로 보인다.

Keywords

References

  1. Bugnion, L., McArdell, B., Bartelt, P. and Wendeler, C. 2012. Measurements of hillslope debris flow impact pressure on obstacles. Landslides 9(2): 179-187. https://doi.org/10.1007/s10346-011-0294-4
  2. Eu, S., Im, S., Kim, D. and Chun, K.W. 2017. Flow and deposition characteristics of sediment mixture in debris flow flume experiments. Forest Science and Technology 13(2): 61-65. https://doi.org/10.1080/21580103.2017.1311949
  3. Fairfield, G. 2011. Assessing the dynamic influences of slope angle and sediment composition on debris flow behaviour: An experimental approach. (Dissertaion). Durham. Durham University.
  4. Garcia Aragon, J.A. 1996. A hydraulic shear stress model for rapid, highly concentrated flow. Journal of Hydraulic Research 34(5): 589-596. https://doi.org/10.1080/00221689609498459
  5. Hungr, O. 2000. Analysis of debris flow surges using the theory of uniformly progressive flow. Earth Surface Processes and Landforms 25(5): 483-495. https://doi.org/10.1002/(SICI)1096-9837(200005)25:5<483::AID-ESP76>3.0.CO;2-Z
  6. Hungr, O., Evans, S., Bovis, M. and Hutchinson, J. 2001. A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience 7(3): 221-238. https://doi.org/10.2113/gseegeosci.7.3.221
  7. Hungr, O., Morgan, G. and Kellerhals, R. 1984. Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal 21(4): 663-677. https://doi.org/10.1139/t84-073
  8. Iverson, R.M. 2015. Scaling and design of landslide and debris-flow experiments. Geomorphology 244: 9-20. https://doi.org/10.1016/j.geomorph.2015.02.033
  9. Iverson, R.M., Logan, M., LaHusen, R.G. and Berti, M. 2010. The perfect debris flow? Aggregated results from 28 large-scale experiments. Journal of Geophysical Research: Earth Surface 115: F03005.
  10. Jakob, M. and Hungr, O. 2005. Debris-flow hazards and related phenomena. Springer. Berlin. pp. 736.
  11. Koch, T. 1998. Testing various constitutive equations for debris flow modelling. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences 248: 249-258.
  12. Koo, R.C.H., Kwan, J.S.H., Ng, C.W.W., Lam, C., Choi, C.E., Song, D. and Pun, W.K. 2016. Velocity attenuation of debris flows and a new momentum-based load model for rigid barriers. Landslides 14(2): 617-629.
  13. Parsons, J.D., Whipple, K.X. and Simoni, A. 2001. Experimental study of the grain-flow, fluid-mud transition in debris flows. The Journal of Geology 109(4): 427-447. https://doi.org/10.1086/320798
  14. Pierson, T.C. 1985. Initiation and flow behavior of the 1980 Pine Creek and Muddy river lahars, Mount St. Helens, Washington. Geological Society of America Bulletin. 96(8): 1056-1069. https://doi.org/10.1130/0016-7606(1985)96<1056:IAFBOT>2.0.CO;2
  15. Prochaska, A.B., Santi, P.M., Higgins, J.D. and Cannon, S,H. 2008. A study of methods to estimate debris flow velocity, Landslides 5(4): 431-444. https://doi.org/10.1007/s10346-008-0137-0
  16. Proske, D,, Suda, J, and Hubl, J. 2011. Debris flow impact estimation for breakers, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 5(2): 143-155. https://doi.org/10.1080/17499518.2010.516227
  17. Rickenmann, D. 1999. Empirical relationships for debris flows. Natural hazards 19(1): 47-77. https://doi.org/10.1023/A:1008064220727
  18. Scheidl, C., Rickenmann, D. and McArdell, B.W. 2013a. Runout prediction of debris flows and similar mass movements. pp. 221-229. In: Landslide Science and Practice. Springer. Berlin.
  19. Scheidl, C., Chiari, M., Kaitna, R., Mullegger, M., Krawtschuk, A., Zimmermann. T. and Proske, D. 2013b. Analysing debris-flow impact models, based on a small scale modelling approach. Surveys in Geophysics 34(1): 121-140. https://doi.org/10.1007/s10712-012-9199-6
  20. Takahashi, T. 1981. Debris flow. Annual review of fluid mechanics 13(1): 57-77. https://doi.org/10.1146/annurev.fl.13.010181.000421
  21. Takahashi, T. 2014. Debris flow: mechanics, prediction and countermeasures. CRC Press/ Balkema. Leiden. pp. 551.

Cited by

  1. Development of Debris Flow Impact Force Models Based on Flume Experiments for Design Criteria of Soil Erosion Control Dam vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/3567374