• Title/Summary/Keyword: Small signal control

Search Result 488, Processing Time 0.025 seconds

Input Impedances of PWM DC-DC Converters: Unified Analysis and Application Example

  • Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2045-2056
    • /
    • 2016
  • The input impedances of pulse width modulated (PWM) dc-to-dc converters, which dictate the outcomes of the dynamic interaction between dc-to-dc converters and their source subsystem, are analyzed in a general and unified manner. The input impedances of three basic PWM dc-to-dc converters are derived with both voltage mode control and current mode control. This paper presents the analytical expressions of the 24 input impedances of three basic PWM dc-to-dc converters with the two different control schemes in a factorized time-constant form. It also provides a comprehensive reference for future dynamic interaction analyses requiring knowledge of the converters' input impedances. The theoretical predictions of the paper are all supported by measurements on prototype dc-to-dc converters. The use of the presented results is demonstrated via a practical application example, which analyzes the small-signal dynamics of an input-filter coupled current-mode controlled buck converter. This elucidates the theoretical background for the previously-reported eccentric behavior of the converter.

DSP Based Series-Parallel Connected Two Full-Bridge DC-DC Converter with Interleaving Output Current Sharing

  • Sha, Deshang;Guo, Zhiqiang;Lia, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.673-679
    • /
    • 2010
  • Input-series-output-parallel (ISOP) connected DC-DC converters enable low voltage rating switches to be used in high voltage input applications. In this paper, a DSP is adopted to generate digital phase-shifted PWM signals and to fulfill the closed-loop control function for ISOP connected two full-bridge DC-DC converters. Moreover, a stable output current sharing control strategy is proposed for the system, with which equal sharing of the input voltage and the load current can be achieved without any input voltage control loops. Based on small signal analysis with the state space average method, a loop gain design with the proposed scheme is made. Compared with the conventional IVS scheme, the proposed strategy leads to simplification of the output voltage regulator design and better static and dynamic responses. The effectiveness of the proposed control strategy is verified by the simulation and experimental results of an ISOP system made up of two full-bridge DC-DC converters.

Modelling and Performance Analysis of UPQC with Digital Kalman Control Algorithm under Unbalanced Distorted Source Voltage conditions

  • Kumar, Venkateshv;Ramachandran, Rajeswari
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1830-1843
    • /
    • 2018
  • In this paper, the generation of a reference current and voltage signal based on a Kalman filter is offered for a 3-phase 4wire UPQC (Unified Power Quality Conditioner). The performance of the UPQC is improved with source voltages that are distorted due to harmonic components. Despite harmonic and frequency variations, the Kalman filter is capable enough to determine the amplitude and the phase angle of load currents and source voltages. The calculation of the first state is sufficient to identify the fundamental components of the current, voltage and angle. Therefore, the Kalman state estimator is fast and simple. A Kalman based control strategy is proposed and implemented for a UPQC in a distribution system. The performance of the proposed control strategy is assessed for all possible source conditions with varying nonlinear and linear loads. The functioning of the proposed control algorithm with a UPQC is scrutinized and validated through simulations employing MATLAB/Simulink software. Using a FPGA SPATRAN 3A DSP board, the proposed algorithm is developed and implemented. A small-scale laboratory prototype is built to verify the simulation results. The stated control scheme for the UPQC reduces the following issues, voltage sags, voltage swells, harmonic distortions (voltage and current), unbalanced supply voltage and unbalanced power factor under dynamic and steady-state operating conditions.

Solution Dynamics Studies for the Lck SH2 Domain Complexed with Peptide and Peptide-Free Forms

  • Yoon, Jeong-Hyeok;Chi, Myung-Whan;Yoon, Chang-No;Park, Jongsei
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.81-81
    • /
    • 1995
  • It is well known that Src Homology 2(SH2) domain in many intracellular signal transduction proteins is very important. The domain has about 100 amino acid residues and bind phosphotyrosine-containing peptide with high affinity and specificity. Lck SH2 domain is a Src-like, lymphocyte-specific tyrosine kinase. An 11-residue phosphopeptide derived from the hamster polvoma middle-T antigen, EPQp YEEIPIYL, binds with an 1 nM dissociation constant to Lck SH2 domain. And it is known that the phosphotyrosine and isoleucine residues of the peptide are tightly bound by two well-defined pockets on Lck SH2 domain's surface. To investigate the conformational changes during complexation of SH2 domain with phosphopeptide we have performed the molecular dynamics simulation for Lck SH2 domain with peptide and peptide-free form at look in aqueous solution. More than 3000 water molecules were incorporated to solvate Lck SH2 domain and peptide. Periodic boundary condition has been applied in molecular dynamics simulation. Data analysis with the results of that simulation shows that the phosphopeptide makes primary interaction with the Lck SH2 domain at six central residues, The comparison of the complexed and uncomplexed SH2 domain structures in solution has revealed only relatively small change. But the hydrophilic and hydrophobic pockets in the protein surface show the conformational changes in spite of the small structural difference between the complex and peptide-free forms.

  • PDF

A Control Algorithm Suitable for High-speed Response Battery Charging System for Elevator Car (승강기 Car용 고속응성 배터리 충전시스템에 적합한 제어알고리즘)

  • Lee, Jung-Hwan;Hwangbo, Chan;Park, Sung-Jun;Park, Seong-Mi;Ko, Jae-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1071-1081
    • /
    • 2022
  • As the demand for high-rise buildings increases, the demand for high-speed elevators is also increasing. In order to make a high-speed elevator, a method is needed to reduce the weight of the elevator's components, which is a constraint on the increase in speed. As a measure to reduce the weight, it is possible to remove the traveling cable for power and signal supply. Since the weight of the traveling cable varies depending on the position of the carriage, it is difficult to compensate the weight using the counter weight. The power supply is a structure in which a brush-rail type power input terminal is installed in the elevator hoistway to receive power in a contact-type manner while the carriage is moving. If a small-capacity ESS is installed in a passenger car, power can be supplied uninterruptedly inside the passenger car. A small-capacity ESS charging system to be applied to such an elevator system is required to perform several functions. First, the passenger Car must be able to charge as much as possible even during high-speed operation. A control algorithm with high responsiveness is required because charging starts and ends repeatedly by the partially installed input power stage. In addition, if the input-side line impedance is large due to the structure of the system and the response characteristic is increased, the stability of the system may be lowered. Accordingly, in this paper, we propose a control algorithm that has a stable steady-state output while having a fast response in a transient state. To verify the proposed control algorithm, simulation was conducted using PSIM, and the performance of the controller was verified by manufacturing a prototype buck conveter charger.

Development of a Novel Noncontact ECG Electrode by MEMS Fabrication Process

  • Mathias, Dakurah Naangmenkpeong;Park, Jaesoon;Kim, Eungbo;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.150-154
    • /
    • 2016
  • Contact electrodes pose threats like inflammation, metal poisoning, and allergic reaction to the user during long term ECG procedure. Therefore, we present a novel noncontact electrocardiographic electrode designed through microelectromechanical systems (MEMS) process. The proposed ECG electrode consists of small inner and large outer circular copper plates separated by thin insulator. The inner plate enables capacitive transduction of bio-potential variations on a subject’s chest into a voltage that can be processed by a signal processing board, whereas the outer plate shields the inner plate from environmental electromagnetic noise. The electrode lead wires are also coaxially designed to prevent cables from coupling to ground or electronic devices. A prototype ECG electrode has an area of about 2.324 cm2, is very flexible and does not require power to operate. The prototype ECG electrode could measure ECG at about 500 um distance from the subject’s chest.

Outage Probability of Decode-and-Forward Relaying Systems with Efficient Partial Relay Selection in Nakagami Fading Channels

  • Lee, Sangjun;Lee, Howon;Choi, Hyun-Ho;Lee, In-Ho
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.22-30
    • /
    • 2014
  • Recently, efficient partial relay selection (e-PRS) was proposed as an enhanced version of PRS. In comparing e-PRS, PRS, and the best relay selection (BRS), there is a tradeoff between complexity and performance; that is, the complexity for PRS, e-PRS, and BRS is low to high, respectively, but vice versa for performance. In this paper, we study the outage probability for e-PRS in decode-and-forward (DF) relaying systems over non-identical Nakagami-m fading channels, where the fading parameter m is an integer. In particular, we provide closed-form expressions of the exact outage probability and asymptotic outage probability for e-PRS in DF relaying systems. Numerical results show that e-PRS achieves similar outage performance to that of BRS for a low or medium signal-to-noise ratio, a high fading parameter, a small number of relays, and a large difference between the average channel powers for the first and the second hops.

Analytic Modeling of Control Moment Gyros (인공위성 자세제어를 위한 제어 모멘트 자이로의 정밀 모델링)

  • Myung, Hyun-Sam;Lee, Hen-Zeh;Park, Jong-Oh;Bang, Hyo-Choong;Oh, Shi-Hwan;Yong, Ki-Lyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.640-646
    • /
    • 2007
  • Actuator-induced disturbance is one of the crucial factors of spacecraft attitude pointing and stability in fine attitude control problems. The control moment gyros (CMGs) are known as very attractive actuators from the point of high power and low weight. In order to develop a CMG as an actuator for fine controls, CMG-induced disturbances should be analyzed. Therefore, this paper aims to develop an analytic model and predict the effect of disturbances of CMGs by assuming static and dynamic imbalances. The proposed model is induced by the Lagrangian method on the basis of the small signal assumption.

Comparative analysis of Bayesian and maximum likelihood estimators in change point problems with Poisson process

  • Kitabo, Cheru Atsmegiorgis;Kim, Jong Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.261-269
    • /
    • 2015
  • Nowadays the application of change point analysis has been indispensable in a wide range of areas such as quality control, finance, environmetrics, medicine, geographics, and engineering. Identification of times where process changes would help minimize the consequences that might happen afterwards. The main objective of this paper is to compare the change-point detection capabilities of Bayesian estimate and maximum likelihood estimate. We applied Bayesian and maximum likelihood techniques to formulate change points having a step change and multiple number of change points in a Poisson rate. After a signal from c-chart and Poisson cumulative sum control charts have been detected, Monte Carlo simulation has been applied to investigate the performance of Bayesian and maximum likelihood estimation. Change point detection capacities of Bayesian and maximum likelihood estimation techniques have been investigated through simulation. It has been found that the Bayesian estimates outperforms standard control charts well specially when there exists a small to medium size of step change. Moreover, it performs convincingly well in comparison with the maximum like-lihood estimator and remains good choice specially in confidence interval statistical inference.

Power system Design of KITSAT-4 Satellite (과학위성 1호 전력계 설계)

  • 김일송;이준영;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.475-483
    • /
    • 2000
  • This paper describes designs about the power system of KITSAT-4 satellite. The KITSAT-4 power system is mainly composed of power stage and control stage. The power stage is a 200〔W〕 buck converter and control stages are hardware controller and software controller The hardware controller is PPT(Peak Power Tracker), battery voltage controller and software controller is battery current controller and direct duty controller. So the operation of power system has many advantages in that it can select controller according to reliable control and precise control. The controller design methods are presented and the small signal analyses are performed to verify system stability.

  • PDF