Abstract
Nowadays the application of change point analysis has been indispensable in a wide range of areas such as quality control, finance, environmetrics, medicine, geographics, and engineering. Identification of times where process changes would help minimize the consequences that might happen afterwards. The main objective of this paper is to compare the change-point detection capabilities of Bayesian estimate and maximum likelihood estimate. We applied Bayesian and maximum likelihood techniques to formulate change points having a step change and multiple number of change points in a Poisson rate. After a signal from c-chart and Poisson cumulative sum control charts have been detected, Monte Carlo simulation has been applied to investigate the performance of Bayesian and maximum likelihood estimation. Change point detection capacities of Bayesian and maximum likelihood estimation techniques have been investigated through simulation. It has been found that the Bayesian estimates outperforms standard control charts well specially when there exists a small to medium size of step change. Moreover, it performs convincingly well in comparison with the maximum like-lihood estimator and remains good choice specially in confidence interval statistical inference.