• Title/Summary/Keyword: Sliding mode method

Search Result 591, Processing Time 0.029 seconds

Sliding Mode Control for a High-Load Wheeled Mobile Robot (중하중을 받는 이동로붓의 슬라이딩모드 제어)

  • 홍대희;정재훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.145-153
    • /
    • 2000
  • This paper discusses the dynamic modeling and robust control development for a differentially steered mobile robot subject to wheel slip according to high load. Consideration of wheel slip is crucial for high load applications such as construction automation tasks because wheel slip acts as a severe disturbance to the system. It is shown that the uncertainty terms due to the wheel slip satisfy the matching condition for the sliding mode control design. From the full dynamic model of the mobile robot, a reduced ideal model is extracted to facilitate the control design. The sliding mode control method ensures the dynamic tracking performance for such a mobile robot. Numerical simulation shows the promise of the developed algorithm.

  • PDF

Precise Control of Ball-Screw Systems with Friction (마찰을 고려한 볼-스크류 시스템의 정밀 제어)

  • 김종식;한성익;공준희;신대왕
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.93-101
    • /
    • 2002
  • The effect of nonlinear friction in the low velocity is dominant in precise controlled mechanisms and it is difficult to identify the friction effect. The friction model which Canudas suggested so called, LuGre model is well expressed the friction effect as Streibeck in the law velocity. But it\`s model parameters were estimated continuously in operation for precise control. This paper suggests the sliding mode controller and observer for compensating the friction effect. Experimental results for a ball-screw system show that the proposed method has a good performance especially in the low velocity.

A Study on the Modeling and Control of High-Speed/High-Accuracy Position Control System (고속/정밀 위치제어시스템의 모델링 및 제어에 관한 연구)

  • 신호준;박민규;윤석찬;한창수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.83-89
    • /
    • 2000
  • This paper presents a dynamic modeling and a sliding mode controller for the high-speed / high-accuracy position control system. Selected target system is the wire bonder head assembly which is used in semiconductor assembly process. This system is a reciprocating one around the pivot point that consists of VCM(voice coil motor) as a actuator and transducer horn as a bonding tool. For the modeling elements, the system is divided into electrical circuit, magnetic circuit and mechanical system. Each system is modeled by using the bond graph method and united into the full system. Two major aims are considered in the design of the controller. The first one is that the horn must track the given reference trajectory. The second one is that the controller must be realizable by using the DSP board. Computer simulation and experimental results show that the designed sliding mode controller provides better performance than the PID controller.

  • PDF

Sliding Mode Control for the Configuration of Satellite Formation Flying using Potential Functions

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Kim, Hae-Dong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.56-63
    • /
    • 2005
  • Some methods have been presented to avoid collisions among satellites for satellite formation flying mission. The potential function method based on Lyapunov's theory is known as a powerful tool for collision avoidance in the robotic system because of its robustness and flexibility. During the last decade, a potential function has also been applied to UAV's and spacecraft operations, which consists of repulsive and attractive potential. In this study, the controller is designed using a potential function via sliding mode technique for the configuration of satellite formation flying. The strategy is based on enforcing the satellite to move along the gradient of a given potential function. The new scalar velocity function is introduced such that all satellites reach the goal points simultaneously. Simulation results show that the controller drives the satellite toward the desired point along the gradient of the potential function and is robust against external disturbances.

Multimachine Stabilizer using Sliding Mode Observer-Model Following including CLF for Measurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.53-58
    • /
    • 1997
  • In this paper, the power system stabilizer(PSS) using the sliding mode observer-model following(SMO-MF) with closed-loop feedback (CLF) for single machine system is extended to multimachine system. This a multimachine SMO-MF PSS for unmeasureable plant state variable is obtained by combining the sliding mode-model following(SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). And the estimated control input for unmeasurable plant sate variables is derived by Lyapunov's second method to determine a control input that keeps the system stable. Time domain simulation results for the torque angle and for the angular velocity show that the proposed multimachine SMO-MF PSS including CLF for unmeasurable plant sate variables is able to damp out the low frequency oscillation and to achieve asymptotic tracking error between the reference model state at different initial conditions and at step input.

  • PDF

Design of $H_{\infty}$ Observer-Based Sliding Mode Controller for Power System Stabilizer : Part II (전력계통안정기를 위한 $H_{\infty}$ 관측기에 기준한 슬라이딩 모드 제어기 설계 : Part II)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1159-1161
    • /
    • 1997
  • This paper presents a power system stabilizer(PSS) using the $H_{\infty}$ observer-based sliding mode controller($H_{\infty}$ observer-based SMC) for unmeasurable state variables. The effectiveness of the proposed $H_{\infty}$ observer-based SMPSS for unmeasurable state variables is shown by the simulation result.

  • PDF

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

A New Approach to Control System Design for Multivariable Systems Using Sliding Mode (슬라이딩모드를 이용한 다연수계통의 새로운 제어계통 설계방법)

  • 박귀태;정군평;김동식;임형용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.1
    • /
    • pp.43-50
    • /
    • 1989
  • In this paper we present a new approach to control system design for multivariable systems using a sliding mode. In the applications of variable structure system (VSS) theory to multivariable systems, there exist some difficulties such as how to determine switching gains and how to reduce chattering phenomena in input and state trajectories. To cope with these drawbacks we introduce switching dynamics instead of switching logics to obtain the sliding mode. Consequently, we can obtain the new design approach which is much simpler than the VSS theory, And there do not exist chattering phenomena in this method because the obtained control inputs are continuous. Hierarchical control concepts are used to the control system design. Numerical examples are discussed as illustrations.

  • PDF

Sensorless Control of SRM using Evoultion-Sliding-Mode Observer (진화 슬라이딩 모드 관측기를 이용한 SRM의 센서리스 제어)

  • Park, Jin-Hyun;Park, Han-Woong;Jun, Hyang-Sik;Jung, Kee-Haw;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2255-2257
    • /
    • 2001
  • This paper introduces a indirect rotor position and speed estimation algorithm for the SRM(switched reluctance motor) sensorless control, based on the sliding mode observer. The information of position and speed is generally provided by encoder or resolver. However, the position sensor not only adds complexity, cost, and size to the whole drive system, but also causes limitation for industrial applications. In this paper, in order to eliminate the position sensor, indirect position sensing method using sliding mode observer is used for SRM drives. And this observer parameters are optimized by evolutionary algorithm. PI controller is also optimized for the SRM to track precisely using evolutionary algorithm.

  • PDF

Model Following Sliding-Mode Control of a Six-Phase Induction Motor Drive

  • Abjadi, Navid R.;Markadeh, Gholamreza Arab;Soltan, Jafar
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.694-701
    • /
    • 2010
  • In this paper an effective direct torque control (DTC) and stator flux control is developed for a quasi six-phase induction motor (QIM) drive with sinusoidally distributed windings. Combining sliding-mode (SM) control and adaptive input-output feedback linearization, a nonlinear controller is designed in the stationary reference frame, which is capable of tracking control of the stator flux and torque independently. The motor controllers are designed in order to track a desired second order linear reference model in spite of motor resistances mismatching. The effectiveness and capability of the proposed method is shown by practical results obtained for a QIM supplied from a voltage source inverter (VSI).