전력계통안정기를 위한 H_{x} 관측기에 기준한 슬라이딩 모드 제어기 설계 : Part II 이 상 성 이 박종근 서울대학교 전기공학부

Design of H_x Observer-Based Sliding Mode Controller for Power System Stabilizer : Part II

Sang-Seung Lee^o and Jong-Keun Park School of Electrical Engineering Seoul National University

[Abstract]

This paper presents a power system stabilizer(PSS) using the H_z observer-based sliding mode controller(H_z observer-based SMC) for unmeasurable state variables. The effectiveness of the proposed H_z observer-based SMPSS for unmeasurable state variables is shown by the simulation result.

Keywords: H. Observer-based Sliding Mode Controller, Lyapunov's Second Method, Power System Stabilizer

1. Introduction

To design the PSS with better performance, many control strategies have been proposed since 1970s. Among these methods, the H_{\star} optimization theory theories[1-3] have been developed as a controller which offers an effective way of the design of transient stability controllers for power system[4-8]. The above H_s optimization theories have been applied for designing power system stabilizers as follows: Ohtsuka et al[4] have been designed to deal with a state feedback Hoptimal control theory-based generator control system algorithm on single machine infite bus system. Asgharian[5] has been designed to deal with a robust H power system stabilizer with no adverse effect on shaft torsional modes and to enhance the performance not only the nominal plant but also a clearly defined set of plants inside which the actual system lies. Chen and Malik[6] have been designed to deal with a systematic method to formulate the H_{\star} optimal PSS design problem into a general H_{*} control design framework and have been tested on a singlemachine infinite bus system. Ahmed, Chen and Petroianu[7] have been designed to deal excitation controllers with a sub-optimal H_{\sim} multimachine system for damping low frequency oscillations. Folly, Yorino and Sasaki[8] have been designed to deal with H_x-PSS using numerator-denominator uncertainty representation. In this paper, we present the power system stabilizer(PSS) using the proposed H₂ observer-based sliding mode controller(SMC) to solve the problem of the full state feedback for unmeasurable state variables and to improve the time domain performance.

2. Power system generator model

The small perturbation transfer-function block diagram of

generator system for a single machine to the infinite bus system is shown in Fig. 1[9].

Fig. 1 Linearized small perturbation model.

The differential equations of the one-machine, infinite bus system in Fig. 1 can be written as

$$\Delta \dot{\omega}(t) = -\frac{K_{\perp}}{2H} \cdot \Delta \delta(t) + \frac{K_{\perp}}{2H} \cdot \Delta e_{\perp}'(t)$$
 (1)

$$\Delta \dot{\delta}(t) = 2\pi f \cdot \Delta \omega(t) \tag{2}$$

$$\Delta E_{\star}(t) = -\frac{K_{\star}}{T_{\star}} \cdot \Delta \delta(t) - \frac{1}{T_{\star}' \cdot K_{\star}} \cdot \Delta E_{\star}(t) + \frac{1}{T_{\star}'} \cdot \Delta E_{\star}(t)$$
(3)

$$\Delta \dot{E}_{\mu}(t) = -\frac{K_{\varepsilon}}{T} \cdot \Delta E_{\mu}(t) + \frac{1}{T} \cdot \Delta V_{\kappa}(t)$$
(4)

$$\Delta \dot{V}_{R}(t) = -\frac{K_{s} \cdot K_{s}}{T_{s}} \cdot \Delta \delta(t) - \frac{K_{s} \cdot K_{s}}{T_{s}} \cdot \Delta E_{s}(t) - \frac{1}{T_{s}} \cdot \Delta V_{R}(t)$$

$$-\frac{K_{A}}{T} \cdot \Delta V_{\varepsilon}(t) + \frac{K_{A}}{T} \cdot u_{\varepsilon}(t) \tag{5}$$

$$\Delta \dot{V}_{\varepsilon}(t) = -\frac{K_{\varepsilon} \cdot K_{\varepsilon}}{T_{\varepsilon} \cdot T_{\varepsilon}} \cdot \Delta E_{\mu}(t) - \frac{K_{\varepsilon}}{T_{\varepsilon} \cdot T_{\varepsilon}} \cdot \Delta V_{\varepsilon}(t) - \frac{1}{T_{\varepsilon}} \cdot \Delta V_{\varepsilon}(t)$$
 (6)

The 6-th order state variables can be expressed as

$$x(t) = \begin{bmatrix} \Delta \omega(t) & \Delta \delta(t) & \Delta E_{*}(t) & \Delta E_{\omega}(t) & \Delta V_{s}(t) & \Delta V_{s}(t) \end{bmatrix}^{T}$$
(7)

where $\Delta \omega(t)$ is the angular velocity, $\Delta \delta(t)$ the torque angle, $\Delta E_{\star}(t)$ the quadratic-axis transient voltage, $\Delta E_{\mu}(t)$ the exciter output voltage, $\Delta V_{\mu}(t)$ the voltage regulator output voltage and $\Delta V_{\nu}(t)$ the output voltage.

3. A H_{\star} observer-based sliding mode controller

The state equation and the output equation[1-3] can be expressed as

$$\dot{x}(t) = A \cdot x(t) + B_1 \cdot w(t) + B_2 \cdot u(t) \tag{8}$$

$$z(t) = C_1 \cdot x(t) + D_{11} \cdot w(t) + D_{22} \cdot u(t)$$
 (9)

$$y(t) = C_1 \cdot x(t) + D_{11} \cdot w(t) + D_{22} \cdot u(t)$$
 (10)

where $x \in R^*$ is the state vector, $u \in R^*$ the control input vector, $w \in R^*$ the exogenous input vector, $z \in R^*$ the regulated output vector and $y \in R^*$ the measured output vector.

The H_{*} observer-based state equation for unmeasurable state variables can be expressed as

$$\hat{x}(t) = A \cdot \hat{x}(t) + B_2 \cdot u(t) + B_1 \cdot \hat{w}(t) + Z_x \cdot K_s \cdot \left(y(t) - \hat{y}(t)\right) \tag{11}$$

where
$$\hat{\mathbf{w}}(t) = \mathbf{y}^{-2} \cdot B_1^T \cdot X_{\mathbf{w}} \cdot \hat{\mathbf{x}}(t)$$
 (12)

$$\hat{y}(t) = [C_2 + \gamma^{-2} \cdot D_2, \cdot B_1^T \cdot X_*] \cdot \hat{x}(t)$$
 (13)

The controller gain K_{ϵ} is given by

$$K_{e} = \widetilde{D}_{12} \cdot \left(B_{2}^{T} \cdot X_{w} + D_{12}^{T} \cdot C_{1} \right) \tag{14}$$

where
$$\tilde{D}_{12} = (D_{12}^T \cdot D_{12})^{-1}$$
 (15)

The estimator gain K is given by

$$K_{c} = \left(Y_{a} \cdot C_{2}^{T} + B_{1} \cdot D_{21}^{T}\right) \cdot \widetilde{D}_{21} \tag{16}$$

where
$$\widetilde{D}_{21} = (D_{21} \cdot D_{21}^{T})^{-1}$$
 (17)

The term Z_{a} is given by

$$Z_{\star} = \left(I - \gamma^{-2} \cdot Y_{\star} \cdot X_{\star}\right)^{-1} \tag{18}$$

The controller Riccati equation term X_* is given by

$$X_{*} = Ric \begin{bmatrix} A - B_{2} \cdot \widetilde{D}_{12} \cdot D_{12}^{T} \cdot C_{1} & \gamma^{-2} \cdot B_{1} \cdot B_{1}^{T} - B_{2} \cdot \widetilde{D}_{12} \cdot B_{2}^{T} \\ -\widetilde{C}_{1}^{T} \cdot \widetilde{C}_{1} & -\left(A - B_{2} \cdot \widetilde{D}_{12} \cdot D_{12}^{T} \cdot C_{1}\right)^{T} \end{bmatrix}$$
(19)

where
$$\tilde{C}_1 = (I - D_{12} \cdot \tilde{D}_{12} \cdot D_{12}^{T}) \cdot C_1$$
 (20)

And the estimator Riccati equation term Y_{ϵ} is given by

$$Y_{x} = Ric \begin{bmatrix} \left(A - B_{1} \cdot \widetilde{D}_{11} \cdot D_{21}^{T} \cdot C_{2} \right)^{T} & \gamma^{-2} \cdot C_{1} \cdot C_{1}^{T} - C_{2}^{T} \cdot \widetilde{D}_{21} \cdot C_{2} \\ -\widetilde{B}_{1} \cdot \widetilde{B}_{1}^{T} & -\left(A - B_{1} \cdot \widetilde{D}_{21}^{T} \cdot \widetilde{D}_{21} \cdot C_{2} \right) \end{bmatrix}$$
(21)

where
$$\widetilde{B}_1 = B_1 \cdot \left(I - D_{21}^T \cdot \widetilde{D}_{21} \cdot D_{21}\right)$$
 (22)

In the design of H₂ observer-based controller for unmeasurable state variables, the control input vector is given by

$$u(t) = -K_c \cdot \hat{x}(t) \tag{23}$$

where $\hat{x} \in \mathbb{R}^*$ is the estimated state variables and K_c the H_z control input gain.

From eq. (11), eq. (12), eq. (13) and eq. (16), we have

$$\dot{\hat{x}}(t) = A \cdot \hat{x}(t) + B_2 \cdot u(t) + B_1 \cdot \hat{w}(t) + Z_\pi \cdot K_\bullet \cdot \left(y(t) - \hat{y}(t)\right)
= \left[A - Z_\pi \cdot K_\bullet \cdot \left[C_2 + \gamma^{-2} \cdot D_{21} \cdot B_1^T \cdot X_\pi\right] \right]
+ B_1 \cdot \gamma^{-2} \cdot B_1^T \cdot X_\pi \cdot \hat{x}(t) + B_2 \cdot u(t) + Z_\pi \cdot K_\bullet \cdot y(t)$$
(24)

Suppose the sliding mode exists on all hyperplanes. Then, during sliding, the switching surface vector for unmeasurable state variables can be expressed as

$$\sigma(\hat{x}(t)) = G^{\tau} \cdot \hat{x}(t) \tag{25}$$

$$\dot{\sigma}(\hat{x}(t)) = G^{\tau} \cdot \dot{\hat{x}}(t) \tag{26}$$

where $\hat{x} \in R^*$ is the estimated state variables and G^* the sliding surface gain.

To determine a control law that keeps the system on $\sigma(\hat{x}(t)) = 0$, we introduce the Lyapunov's second method

$$V(\hat{\mathbf{x}}(t)) = \sigma^{2}(\hat{\mathbf{x}}(t))/2 \tag{27}$$

The time derivative of $V(\hat{x}(t))$ can be expressed as

$$\dot{V}(\hat{x}(t)) = \sigma(\hat{x}(t)) \cdot \dot{\sigma}(\hat{x}(t)) \qquad (28)$$

$$= G^{\tau} \cdot \hat{x}(t) \cdot G^{\tau} \cdot \dot{x}(t)$$

$$= G^{\tau} \cdot \hat{x}(t) \cdot \left[G^{\tau} \cdot \left[A - Z_{*} \cdot K_{*} \cdot \left[C_{2} + \gamma^{-2} \cdot D_{21} \cdot B_{1}^{\tau} \cdot X_{*} \right] \right] + B_{1} \cdot \gamma^{-2} \cdot B_{1}^{\tau} \cdot X_{*} \right] \cdot \hat{x}(t) + G^{\tau} \cdot B_{2} \cdot u_{\text{Exc}}(t)$$

$$+ G^{\tau} \cdot Z_{*} \cdot K_{*} \cdot y(t) \right] \leq 0 \qquad (29)$$

From eq. (29), the control input of the H_{\bullet} observer-based SMC for unmeasurable state variables with switching can be reduced

$$\begin{aligned} u_{DK}^{*}(t) &\geq -\left(G^{T} \cdot B_{2}\right)^{-1} \cdot \left[G^{T} \cdot \left[A - Z_{n} \cdot K_{n}\right] \\ &\left[C_{2} + \gamma^{-2} \cdot D_{2}_{1} \cdot B_{1}^{T} \cdot X_{n}\right] + B_{1} \cdot \gamma^{-2} \cdot B_{1}^{T} \cdot X_{n}\right] \\ &\hat{x}(t) + G^{T} \cdot Z_{n} \cdot K_{n} \cdot y(t) \quad for \quad G^{T} \cdot \hat{x}(t) > 0 \end{aligned} \tag{30}$$

$$u_{DK}^{*}(t) &\leq -\left(G^{T} \cdot B_{2}\right)^{-1} \cdot \left[G^{T} \cdot \left[A - Z_{n} \cdot K_{n}\right] + B_{1} \cdot \gamma^{-2} \cdot B_{1}^{T} \cdot X_{n}\right] \\ &\left[C_{2} + \gamma^{-2} \cdot D_{2} \cdot B_{1}^{T} \cdot X_{n}\right] + B_{1} \cdot \gamma^{-2} \cdot B_{1}^{T} \cdot X_{n}\right] \\ &\hat{x}(t) + G^{T} \cdot Z_{n} \cdot K_{n} \cdot y(t) \quad for \quad G^{T} \cdot \hat{x}(t) < 0 \end{aligned} \tag{31}$$

Finally, from eq. (30) and eq. (31), the control input of the proposed H_{τ} observer-based SMC for unmeasurable state variables with sign function can be reformed

$$u_{SSE}^{top}(t) = -\left(G^{T} \cdot B_{2}\right)^{-1} \left[G^{T} \cdot \left[A - Z_{\alpha} \cdot K_{\epsilon} \cdot \left[C_{2} + \gamma^{-2} \cdot D_{21} \cdot B_{1}^{T} \cdot X_{\alpha}\right] + B_{1} \cdot \gamma^{-2} \cdot B_{1}^{T} \cdot X_{\alpha}\right] \cdot \hat{x}(t) + G^{T} \cdot Z_{\alpha} \cdot K_{\epsilon} \cdot y(t)\right] \cdot sign\left(\sigma\left(\hat{x}(t)\right)\right)$$
(32)

To simplfy the eq.(32), the following equation can be formed

$$u_{soc}^{sign}(t) = \left[GK_1 \cdot \hat{x}(t) + GK_2 \cdot y(t)\right] \cdot sign\left(\sigma(\hat{x}(t))\right)$$
(33)

where
$$GK_1 := -(G^T \cdot B_2)^{-1} \cdot G^T \cdot [A - Z_{\star} \cdot K_{\star}]$$

$$[C_2 + \gamma^{-2} \cdot D_{21} \cdot B_1^T \cdot X_{\star}] + B_1 \cdot \gamma^{-2} \cdot B_1^T \cdot X_{\star}]$$
(34)

$$GK_2 := -(G^T \cdot B_2)^{-1} \cdot G^T \cdot Z_x \cdot K_x \tag{35}$$

Fig. 2 is the block diagram of the proposed H_{\star} observerbased SMC for unmeasurable state variables.

Fig. 2 Block diagram of the proposed H₂ observer-based SMC for unmeasurable state variables.

4. Data analysis

To determine the values of the A and the B_2 , the $K_1 \sim K_6$ values under normal load operation are given as

K1 = 1.1584 K2 = 1.4347 K3 = 0.3600

K4 = 1.8364 K5 = -0.1113 K6 = 0.3171

And the values of the A and the B_2 under normal load operation are given by

$$A = \begin{bmatrix} 0 & -0.1158 & -0.1435 & 0 & 0 & 0 \\ 314.159 & 0 & 0 & 0 & 0 & 0 \\ 0 & -0.3061 & -0.4630 & 0.1667 & 0 & 0 \\ 0 & 0 & 0 & 0.1 & 2 & 0 \\ 0 & 111.33 & -317.11 & 0 & -20 & -1000 \\ 0 & 0 & 0 & 0.01 & 0.2 & -2 \end{bmatrix}$$

$$B_1 = \begin{bmatrix} \frac{1}{2H} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T B_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1000 & 0 \end{bmatrix}^T$$

 $C_1 = diag(100, 0, 0, 0, 0, 0, 0)$ $C_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ The sliding surface vector can be obtained

 $G = \begin{bmatrix} -82146.276 & 188.818 & 2647.961 & -32.674 & 1.0 & 539.925 \end{bmatrix}^T$

5 Simulation studies

Simulation study is carried out to evaluate the performance of the proposed H_{\star} observer-based SMPSS for a 5[sec]. Fig. 3 is the angular velocity waveforms of the H_{\star} observer-based PSS and the proposed H_{\star} observer-based SMPSS under normal load operation.

Fig. 3 Waveforms for angular velocity under normal load.

6. Conclusion

The power system stabilizer(PSS) using the proposed H_{\star} observer-based sliding mode controller(SMC) has been presented. The proposed H_{\star} observer-based SMPSS has been demonstrated good performance under normal load operation.

References

- J. C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, "State-space solutions to standard H₂ and H₂ control problems", *IEEE Trans. on Automatic Control*, Vol. 34, No. 8, pp. 831-847, Aug., 1989.
- [2] K. Zhou, K. Glover, B. Bodenheimer and J. C. Doyle, "Mixed H₁ and H_e performance objectives I: Robust performance analysis", *IEEE Trans. on Automatic Control*, Vol. 39, No. 8, pp. 1564-1574, Aug., 1994.
- [3] J. C. Doyle, K. Zhou, K. Glover and B. Bodenheimer, "Mixed H₂ and H_m performance objectives II: Optimal control", *IEEE Trans. on Automatic Control*, Vol. 39, No. 8, pp. 1575-1587, Aug., 1994.
- [4] K. Ohtsuka., et. al., "An H_e optimal control theory-based generator control system", *IEEE Trans. on Energy Conversion*, Vol. 7, No. 1, pp. 108-113, 1992.
- [5] R. Asgharian, "An H_n optimal control theory-based generator control system", *IEEE Trans. on Energy Conversion*, Vol. 9, No. 3, pp. 475-481, 1994
- [6] S. Chen and O. P. Malik, "H_{*} optimisation-based power system sta-bilizer design", *IEE Proc. Gener. Distrib.*, Vol. 142, No. 2, pp. 179-184, Mar., 1995.
- [7] S. S. Ahmed, L. Chen and A. Petroianu, "Design of suboptimal H_{*} excitation controllers", *IEEE Trans. on Power Systems*, Vol. 11, No. 1, pp. 312-318, Feb., 1996.
- [8] K. A. Folly, N. Yorino and H. Sasaki, "Design of H_e-PSS using numerator-denominator uncertainty representation", *IEEE Trans. on Energy Conversion*, Vol. 12, No. 1, pp. 45-50, 1997.
- [9] M. L. Kothari, J. Nanda and K. Bhattacharya, "Design of variable structure power system stabilizers with desired eigenvalues in the sliding mode", *IEE Proc. C*, Vol. 140, No. 4, pp. 263-268, 1993.