• Title/Summary/Keyword: Slag Powder

Search Result 367, Processing Time 0.033 seconds

Analysis of Influence Factors in Fineness Rapid Evaluation Blast Furnace Slag Powder by Hydrometer (액체밀도계에 의한 고로슬래그 미분말 분말도 신속평가에서의 영향인자 분석)

  • Moon, Byeong-Yong;Kim, Min-Sang;Lee, Jea-Hyeon;Joo, Eun-Hui;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.167-168
    • /
    • 2017
  • In this research, the blast-furnace slag powder using the hydrometer also attempted to analysis the influence factor due to the temperature change of water and sample, and the number of upside down turns at the time of rapid evaluation. As a result, the influence of the number of turn was not large, but was the temperature of the water and sample are greatly affected.

  • PDF

Effect of Binder Types and Replacement ratio on the Properties of Blast Slag Mortar Using the Recycled Fine Aggregates (결합재 종류 및 치환율 변화가 순환잔골재 사용 고로슬래그 모르타르의 품질에 미치는 영향)

  • Feng, Hai-Dong;Park, Kyung-Taek;Baek, Dae-Hyun;Kim, Dae-Gun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.77-78
    • /
    • 2011
  • This study is analysis of effect of binder types and replacement ratio on the properties of blast furnace slag mortar using the recycled fine aggregates. The results of the study were was follows. Compressive strength was increased according to an increase in replacement ratio of fine particle cement and gypsum. Absorption was reduced according to an increase in replacement ratio of fine particle cement and recycled aggregate fine powder.

  • PDF

Engineering Properties of Permeable Polymer Concrete with Blast Furnace Slag and Fly Ash (고로 슬래그와 플라이 애시를 혼입한 투수성 폴리머 콘크리트의 공학적 특성(구조 및 재료 \circled2))

  • 김인수;윤준노;서대석;조일호;한영규;박종화;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.272-277
    • /
    • 2000
  • This study is performed to evaluate the engineering properties of permeable polymer concrete with blast furnace slag and fly ash. The following conclusions are drawn; 1. The highest strength is achieved by 50% filled blast furnace slag powder and fly ash permeable polymer concrete, it is increased 36% by compressive strength, 119% by tensile strength and 217% by bending strength than that of the normal cement concrete, respectively. 2. The ultrasonic pulse velocity is in the range of 2,022 ∼ 2,139m/s. The highest pulse velocity is showed by 50% filled blast furnace slag powder and fly ash permeable polymer concrete. 3. The water permeability is in the range of 4.612∼5.913$\ell$/$\textrm{cm}^2$/h, and it is largely dependent upon the mix design.

  • PDF

Effect of Adding Gypsum in Blast-Furnace-Based Mortar's Fundamental Properties (이수석고가 고로슬래그 미분말 활용 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Lu, Liang Liang;Kim, Jun Ho;Park, Jun Hee;Huang, Jin Guang;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.137-138
    • /
    • 2013
  • Nowadays, research about using recycled aggregate as alkali activator has been investigated. By the mechanism of Alkali activation, blast furnace slag's potential hydraulis property would be activated. Thee application of this technique is considered as fit for low strength concrete, so it's suitable in concrete secondary production such as bricks and blocks. Aside alkali activator, sulfate could also activate blast furnace slag's potential hydranlis property. In this research, gypsum(CaSO4·2H2O)has been added with blast furnace slag. Fundamental experiment such as flow and strength has been tested to evalnate effect of gypsum's activation property.

  • PDF

Effect of Early Compressive Strength Development with Blast Furnace Slag Using Various stimulants Mortar. (각종자극제가 고로슬래그 미분말 혼입 모르타르의 초기재령 압축강도 발현에 미치는 영향)

  • kim, Jin-Hyoung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.57-58
    • /
    • 2011
  • In the experiment, we add to NaOH, Ca(OH)2 and Calcium Hydroxide as the Slag stimulus also mixed the cement stimulus such as NaSCN, TEA and CaCl2 for improving compressive strenth of concrete which added the Blast Furnace Slag Powder at 1 and 3 days. In the result of strength test, It showed that 2percentage of activator 1 and 5percentage Ca(OH)2, 1percentage of activator 3 and 5percentage of Ca(OH)2 are higher than 100 percentage OPC.

  • PDF

Hydrogen Behavior in the Steelmaking Process (제강공정에서 수소의 거동)

  • Shim, Sang-chul;Cho, Jung-wook;Hwang, Sang-taek;Kim, Kwang-chun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.662-671
    • /
    • 2008
  • The behavior of hydrogen in the steel making process was investigated. The relation between the composition of ladle slag and hydrogen concentration in molten steel was considered. The hydrogen distribution ratio between ladle slag and molten steel was increased with increasing basicity of the slag; it was about 20 when the basicity of slag was 15. Hydroxyl capacity measured from the hydrogen distribution ratio between slag and the molten steel was comparatively corresponding to the value of hydroxyl capacity measured by the equilibrium reaction of slag and $H_2O$ gas. However, it is considerably different from the value calculated by regular solution model. The influence of hydrogen on a sticking type breakout is considered. The effect of hydrogen and $H_2O$ gas on the crystallization behavior of mold powder was investigated by DHTT (Dual hot thermocouple technique). As a result, it was proved that mold powder could be crystallized by $H_2O$ gas in the atmosphere. Therefore, it is concluded that $H_2O$ gas in the atmosphere can be a possible cause of the sticking type breakout that occasionally occurs in the continuous casting process.

Properties of Lightweight Foamed Concrete with Waste Styrofoam and Crude Steel Cement (폐스티로폼과 조강시멘트를 혼입한 경량기포콘크리트의 특성)

  • Park, Chae-Wool;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.77-78
    • /
    • 2020
  • In Korea, more than 30,000 tons of waste Styrofoam are produced every year. Styrofoam is spent more than 500 years decomposing during the reclamation process, so it needs to be recycled. The recycling rate of waste styrofoam continues to be the third highest in the world, but it is lower than that of Germany and Japan. Therefore, measures are needed to increase the recycling rate of waste Styropol. Another problem is that cement is mainly used in existing lightweight foam concrete. However, large amounts of CO2 from cement-producing processes cause environmental pollution. Currently, Korea is increasing its greenhouse gas reduction targets to cope with energy depletion and climate change, and accelerating efforts to identify and implement reduction measures for each sector. In 2013 alone, about 600 million tons of carbon dioxide was generated in the cement industry. Therefore, this study replaces CO2 generation cement with furnace slag fine powder, uses crude steel cement for initial strength development of bubble concrete, and manufactures hardening materials to study its properties using waste styrofoam. As a result of the experiment, the hardening agent replaced by micro powder of furnace slag was less intense and more prone to absorption than cement using ordinary cement. Further experiments on the segmentation and strength replenishment of furnace slag are believed to contribute to the manufacture of environmentally friendly lightweight foam concrete.

  • PDF

A Study on the Reduction of Iron Oxide from Slag in the EAF Process (전기로 공정에서 슬래그 중 산화철의 환원 회수에 관한 연구)

  • Kim, Young-Hwan;Yoo, Jung-Min
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.54-59
    • /
    • 2016
  • EAF processed slag which contains about 20 ~ 35 weight percent FetO is poured to slag pot and cooled. If we recover Fe from molten slag by the reduction, we will improve steel yield rate and reduce slag quantity poured from the furnace. Usually, carbon is used as a reductant and slag foaming agent in the EAF process. In this experiment, after melt the metal in induction furnace and then add slag with carbon and Al dross powder as a reductant, we investigated the reduction of FetO from slag and change of Phophorus content. As the result, when we use Al dross as a reductant, recovery rate is two times more than carbon. Phosphorus pick up is less than 50ppm with reduction of EAF slag.

Characterization of Flowable Fill with Ferro-Nickel Slag Dust (페로니켈 슬래그 미분말을 이용한 유동성 뒤채움재 특성)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.16-21
    • /
    • 2017
  • The aim of this study was to utilize ferronickel slag produced in the manufacture of stainless steel as a flowable backfill material for underground use using crushed fine powder. Experimental combinations were made using two components: Case A (sand) and Case B (soil). The optimal mixing ratio of Case A was sand (58.4%), ferronickel slag fine powder (21.6%), cement (1.8%), and water (18.2%). In the case of B, the optimal mixing ratio was determined to be soil (53.0%), ferronickel slag fine powder (20.0%), cement (1.7%), and water (25.3%). The uniaxial compressive strength of case A, which is a mixture of ordinary sand and ferronickel slag powder, was relatively larger than that of case B using soil. In addition, the strength of the specimen increased with increasing curing time. The uniaxial compressive strength tended to increase with increasing curing time. In addition, the unconfined compression strength of the fluid backfill material using common sand as the main material was relatively larger than that of the mixed material using soil as the main material. In case A, the uniaxial compressive strength ranged from 0.17-0.33 MPa, 0.21-0.39 MPa, and 0.19-0.40 MPa, respectively, at curing times of 7, 14, and 28 days. From the experimental results, it was concluded that the ratio of FNS powder and cement mixture was the most appropriate for Case A3. Case B, which used soil as the main material, showed a similar tendency to Case A. As a result of the dissolution test for evaluating the environmental harm of the FNS fine powder, there was no dissolution of substances harmful to the environment.

The Characteristics of Blastfurnace Slag Blended Cement with Low Blaine Slag Powder (저 분말도 슬래그를 사용한 슬래그 시멘트의 특성)

  • 변승호;최현국;김재영;송종택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.19-24
    • /
    • 1998
  • In this study, blended cement with low blaine(2000, 3000$\textrm{cm}^2$/g) blast-furnace slag power by 10-70wt.% was investigated through the measurement hydration heat, physical properties. The experiment results indicated compressive strength was decreased as low blaine slag blended, but hydration heat was reduced significantly and flow of the cement paste was increased.

  • PDF