• Title/Summary/Keyword: Skin Inflammation

Search Result 749, Processing Time 0.023 seconds

Sphingolipids and Antimicrobial Peptides: Function and Roles in Atopic Dermatitis

  • Park, Kyungho;Lee, Sinhee;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.251-257
    • /
    • 2013
  • Inflammatory skin diseases such as atopic dermatitis (AD) and rosacea were complicated by barrier abrogation and deficiency in innate immunity. The first defender of epidermal innate immune response is the antimicrobial peptides (AMPs) that exhibit a broad-spectrum antimicrobial activity against multiple pathogens, including Gram-positive and Gram-negative bacteria, viruses, and fungi. The deficiency of these AMPs in the skin of AD fails to protect our body against virulent pathogen infections. In contrast to AD where there is a suppression of AMPs, rosacea is characterized by overexpression of cathelicidin antimicrobial peptide (CAMP), the products of which result in chronic epidermal inflammation. In this regard, AMP generation that is controlled by a key ceramide metabolite S1P-dependent mechanism could be considered as alternate therapeutic approaches to treat these skin disorders, i.e., Increased S1P levels strongly stimulated the CAMP expression which elevated the antimicrobial activity against multiple pathogens resulting the improved AD patient skin.

Protection of UV-derived Skin Cell Damage and Anti-irritation Effect of Juniperus chinensis Xylem Extract (향나무추출물의 광손상으로부터 피부세포 보호와 자극완화 효과에 대한 연구)

  • 김진화;박성민;심관섭;이범천;표형배
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-71
    • /
    • 2004
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmental facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Juniperus chinensis xylem extract on the UV and SLS-induced skin cell damages. We tested free radical and superoxide scavenging effect in vitro. We found that Juniperus chinensis xylem extracts had potent radical scavenging effect by 98% at 100 $\mu\textrm{g}$/mL. Fluorometric assays of the proteolytic activities of matrix metalloproteinase-l(MMP-1, collagenase) were performed using fluorescent collagen substrates. UV A induced MMP-1 synthesis and activity were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in skin fibroblasts. The extract of Juniperus chinensis showed strong inhibitory effect on MMP-1 activities by 97% at 100 $\mu\textrm{g}$/mL and suppressed the UVA induced expression of MMP-1 by 79% at 25 $\mu\textrm{g}$/mL. This extract also showed strong inhibition on MMP-2 activity in UVA irradiated fibroblast by zymography. We also examined anti-inflammatory effects by the determination test of proinflammatory cytokine, interleukin 6 in HaCaT keratinocytes. In this test Juniperus chinensis decreased expression of interleukin 6 about 30%. Expression of prostaglandin E$_2$, (PGE$_2$) after UVB irradiation was measured by competitive enzyme immunoassay (EIA) using PGE$_2$ monoclonal antibody. At the concentrations of 5-50 $\mu\textrm{g}$/mL of the extracts, the production of PGE$_2$ by HaCaT keratinocytes (24 hours after 10 mJ/$\textrm{cm}^2$ UVB irradiation) was significantly inhibited in culture supernatants (p〈0.05). The viability of cultured HaCaT keratinocytes was significantly reduced at the doses of above 10 mJ/$\textrm{cm}^2$ of UVB irradiation, but the presence of these extracts improved cell viability comparing to control after UVB irradiation. We also investigated the protective effect of this extract in sodium lauryl sulfate (SLS)-induced irritant skin reactions from 24 hour exposure. Twice a day application of the extract for reducing local inflammation in human skin was done. Irritant reactions were assessed by various aspects of skin condition, that is, erythema (skin color reflectance) and transepidermal water loss (TEWL). After 5 days the extract was found to reduce SLS-induced skin erythema and improve barrier regeneration when compared to untreated symmetrical test site. In conclusion, our results suggest that Juniperus chinensis can be effectively used for the prevention of UV and SLS-induced adverse skin reactions such as radical production, inflammation and skin cell damage.

Effect of Euterpe oleracea Mart. (acai berry) Extract on Skin Flap Survival in Mice

  • Jung, Sangbong;Kim, Jongsik;Kim, Eun-Joong;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.25 no.3
    • /
    • pp.282-287
    • /
    • 2019
  • Skin flap necrosis remains a major complication of reconstructive surgery. Euterpe oleracea Mart., popularly known as "acai berry" contains hydroxybenzoic acid, antioxidant polyphenolics and anthocyanins. These and other compounds within the acai berry confer anti-inflammatory and anti-oxidative effects. In this current study, we evaluated the protective effect of acai berry extracts on survival of random-pattern skin flaps in a murine model by histologic analysis. ICR mice were subjected to skin elevation surgery and orally administered acai berry extract (100 mg/kg) daily for 7 days. Tissues were stained with hematoxylin-eosin or Masson's trichrome to observe tissue integrity and collagen deposition. In addition, $TGF-{\beta}$ and VEGF was stained by immunofluorescence to determine anti-inflammatory cell infiltration and neovascularization, respectively. We found a decrease in inflammatory cell infiltration and increase in collagen deposition in the acai berry extract treated mice compared to control mice. Immunofluorescence staining reveal a higher number of $TGF-{\beta}$ positive cells and enhanced VEGF staining in the acai berry extract treated mice. The results from this study indicate that oral uptake of acai berry extract can promote healing and survival of surgical skin flaps in mice providing an augmentative therapeutic approach to enhancing skin flap survival.

Antioxidation and anti-inflammatory effects of gamma-irradiated silk sericin and fibroin in H2O2-induced HaCaT Cell

  • Ji-Hye Choi;Sangmin Lee;Hye-Ju Han;Jungkee Kwon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.105-112
    • /
    • 2023
  • Oxidative stress in skin cells can induce the formation of reactive oxygen species (ROS), which are critical for pathogenic processes such as immunosuppression, inflammation, and skin aging. In this study, we confirmed improvements from gamma-irradiated silk sericin (I-sericin) and gamma-irradiated silk fibroin (I-fibroin) to skin cells damaged by oxidative stress. We found that I-sericin and I-fibroin effectively attenuated oxidative stress-induced ROS generation and decreased oxidative stress-induced inflammatory factors COX-2, iNOS, tumor necrosis factor-α, and interleukin-1β compared to the use of non-irradiated sericin or fibroin. I-sericin and Ifibroin effects were balanced by competition with skin regenerative protein factors reacting to oxidative stress. Taken together, our results indicated that, compared to non-irradiated sericin or fibroin, I-sericin, and I-fibroin had anti-oxidation and antiinflammation activity and protective effects against skin cell damage from oxidative stress. Therefore, gamma-irradiation may be useful in the development of cosmetics to maintain skin health.

Effects of Molecular Weights of Sodium Hyaluronate on the Collagen Synthesis, Anti-inflammation and Transdermal Absorption (히알루론산나트륨의 분자량 크기에 따른 Collagen 합성, 항염증 및 피부 흡수에 미치는 영향)

  • Shin, Eun Ji;Park, Joo Woong;Choi, Ji Won;Seo, Jeong Yeon;Park, Yong Il
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.3
    • /
    • pp.235-245
    • /
    • 2016
  • In this study, we examined the effects of various molecular weights (1, 10, 50, 100, 660, and 1500 kDa) of sodium hyaluronate (HA), which were prepared by enzyme hydrolysis, on the collagen synthesis, anti-inflammation and skin absorption. These HA did not significantly affect the viability of human dermal fibroblast Hs68 cells. Among them, 1500 kDa, 50 kDa HA most significantly increased collagen production by 59%, and 50% in the Hs 68 cells, respectively. Whereas 1500 and 660 kDa HA hardly pass through mouse transdermis membrane, lower molecular weights (1, 10, or 50 kDa) of HA showed time-dependent increase in skin permeation. HA of 50 kDa showed highest anti-inflammatory effects by reducing nitric oxide and tumor necrosis factor-${alpha}$ production in the RAW 264.7 cells, comparing to other HA (1, 10, and 100 kDa HA). Recently, there is no report about anti-wrinkle and anti-inflammatory effects and skin permeation of different molecular weights HA (1, 10, 50, 100, 660 and 1500 kDa), which were produced by enzyme hydrolysis. These results suggested that 50 kDa HA can be potent candidates for the development of effective anti-aging and anti-wrinkle cosmetic agents. The results of this study demonstrated that among those HA with different molecular weights, 50 kDa HA showed highest anti-inflammatory activity, significant capability to induce collagen synthesis and high level of skin permeation.

Analysis of Potential Active Ingredients and Treatment Mechanism of Atractylodes Lancea(Thunb.) D.C and Magnolia Officinalis Rehder et Wilson for Dermatitis Accompanied by Pruritus Using Network Pharmacology (네트워크 약리학을 이용한 소양증을 동반한 피부 염증에 대한 창출(蒼朮) 및 후박(厚朴)의 잠재적 치료기전 탐색)

  • YeEun Hong;GwangYeel Seo;Byunghyun Kim;Kyuseok Kim;Haejeong Nam;YoonBum Kim
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.4
    • /
    • pp.30-50
    • /
    • 2023
  • Objectives : To investigate the active compounds and therapeutic mechanisms of Atractylodes Lancea(Thunb.) D.C. and Magnolia Officinalis Rehder et Wilson in the treatment of dermatitis accompanied by pruritus, as well as their potential to complement or replace standard drugs. Methods : We conducted the network pharmacological analysis. We selected effective ingredients among the active compounds of research target herbs. Then we explore pathway/terms of the common target proteins among research target herbs, fexofenadine and disease. Results : We selected 9 active compounds are selected from Atractylodes lancea and identified 231 target proteins. Among them, 74 proteins are associated with inflammatory skin diseases that cause pruritus. These proteins are involved in various pathways including, 'Nitric-oxide synthase regulator activity', 'Hydroperoxy icosatetraenoate dehydratase activity, Aromatase activity', 'RNA-directed DNA polymerase activity', 'Arachidonic acid metabolism', 'Peptide hormone processing', 'Chemokine binding' and 'Sterol biosynthetic process'. Additionally, coregenes are involved in 'IL-17 signaling pathway'. Similarly, we selected 2 active compounds from Magnolia officinalis and identified 133 target proteins. Among them, 33 proteins are related to inflammatory skin diseases that cause pruritus. These proteins are primarily involved in 'Vascular associated smooth muscle cell proliferation' and 'Arachidonic acid metabolism'. There is no significant difference between the pathways in which coregenes are involved. Conclusions : It is expected that Atractylodes Lancea will be able to show direct or indirect anti-pruritus and anti-inflammatory effects on skin inflammation accompanied pruritus through suppressing inflammation and protecting skin barrier. Meanwhile, it is expected that Magnolia Officinalis will only be able to show indirect anti-inflammation effects. Therefore, Atractylodes Lancea and fexofenadine are believed to complement each other, whereas Magnolia Officialinalis is expected to provide supplementary support on skin disease.

Photoprotective Potential of Penta-O-Galloyl-β-D-Glucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin

  • Kim, Byung-Hak;Choi, Mi Sun;Lee, Hyun Gyu;Lee, Song-Hee;Noh, Kum Hee;Kwon, Sunho;Jeong, Ae Jin;Lee, Haeri;Yi, Eun Hee;Park, Jung Youl;Lee, Jintae;Joo, Eun Young;Ye, Sang-Kyu
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.982-990
    • /
    • 2015
  • Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-${\kappa}B$) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-${\kappa}B$ signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.

Anti-inflammatory Effects of Enzymatic Extract from Ecklonia cava on TPA-induced Ear Skin Edema

  • Ahn, Ginnae;Park, Eun-Jin;Kim, Dae-Seung;Jeon, You-Jin;Shin, Tae-Kyun;Park, Jae-Woo;Woo, Ho-Chun;Lee, Ki-Wan;Jee, Young-Heun
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.745-750
    • /
    • 2008
  • Anti-inflammatory potential of the enzymatic extract prepared by Kojizyme (ECK), a component of brown seaweeds Ecklonia cava (Alariaceae, Phaeophyta) in vivo was investigated. For the application of mouse ear edema model, 12-O-tetradecanoylphorbol acetate (TPA) was used, a topical inducer of a long-lasting inflammatory response. Our results demonstrated that ECK inhibited ear edema when topically applied to mouse ear skin. In histological evaluation, the inhibition activity of ECK on TPA-induced inflammation is similar to that of dexamethasone, although less strong. In addition, the mRNA expression levels of IL-$1{\beta}$, IFN-$\gamma$, TNF-$\alpha$, and cyclooxygenase-2 (COX2) and the immunoreactivity to inducible nitric oxide synthase (iNOS) and COX2 expressed mainly in inflammatory cells were down-regulated by ECK. These results indicate that ECK has anti-inflammatory effects through the inhibition of Th1 cytokines and 2 inducers of inflammation in TPA-induced ear skin edema.

Hataedock Treatments for Dermatophagoides Farinae-induced Atopic Dermatitis in NC/Nga Mice Treated with High-fat Diet

  • Ahn, Sang Hyun;Kim, Hee Yeon;Yang, In Jun;Jeong, Han Sol;Kim, Kibong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.6
    • /
    • pp.396-402
    • /
    • 2018
  • Hataedock (HTD) treatment is a traditional preventive therapy for the fetal toxicosis- the acute allergic disease after childbirth, mainly manifested by a variety of skin allergies such as scab, phlegm. The aim of this study was to investigate the efficacy of HTD treatments for the alleviation of inflammation in Dermatophagoides farinae-induced obese NC/Nga mice. 20 mg/kg of Coptidis Rhizoma, Glycyrrhizae Radix (CRGR) extracts as a remedy of HTD treatments were orally administered to NC/Nga mice. We induced obesity in the mice by high-fat diet. To induce skin allergies, the extracts of Dermatophagoides farinae were topically applied on the NC/Nga mice at 4th-6th and 8th-10th weeks. Structural and molecular changes in the skin tissues were measured by immunohistochemical staining. HTD treatment decreased the atopic dermatitis (AD)-like symptoms including hemorrhage, erythema, erosion, edema, and dryness. HTD treatment suppressed the mast cell activation confirmed by reduction of $Fc{\varepsilon}RI$, substance P, and serotonin. The expression of several inflammatory mediators including nuclear factor-kappa B ($NF-{\kappa}B$) p65, inducible nitric oxide synthase (iNOS), vascular endothelial growth factors (VEGFs) was also decreased by HTD treatment. HTD treatment suppressed the allergic, inflammatory responses in the skin tissues of the NC/Nga mice by reducing mast cells and down-regulating several inflammatory mediators.

Oleanolic Acid Protects the Skin from Particulate Matter-Induced Aging

  • Kim, Youn Jin;Lee, Ji Eun;Jang, Hye Sung;Hong, Sung Yun;Lee, Jun Bae;Park, Seo Yeon;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.220-226
    • /
    • 2021
  • The role of particulate matter (PM) in health problems including cardiovascular diseases (CVD) and pneumonia is becoming increasingly clear. Polycyclic aromatic hydrocarbons, major components of PM, bind to aryl hydrocarbon receptor (AhRs) and promote the expression of CYP1A1 through the AhR pathway in keratinocytes. Activation of AhRs in skin cells is associated with cell differentiation in keratinocytes and inflammation, resulting in dermatological lesions. Oleanolic acid, a natural component of L. lucidum, also has anti-inflammation, anticancer, and antioxidant characteristics. Previously, we found that PM10 induced the AhR signaling pathway and autophagy process in keratinocytes. Here, we investigated the effects of oleanolic acid on PM10-induced skin aging. We observed that oleanolic acid inhibits PM10-induced CYP1A1 and decreases the increase of tumor necrosis factor-alpha and interleukin 6 induced by PM10. A supernatant derived from keratinocytes cotreated with oleanolic acid and PM10 inhibited the release of matrix metalloproteinase 1 in dermal fibroblasts. Also, the AhR-mediated autophagy disruption was recovered by oleanolic acid. Thus, oleanolic acid may be a potential treatment for addressing PM10-induced skin aging.