• Title/Summary/Keyword: Skeletal muscle atrophy

Search Result 88, Processing Time 0.024 seconds

Effects of glucoraphanin in dexamethasone-induced skeletal muscle atrophy in vitro model (Dexamethasone으로 유도된 근위축 세포모델에서 glucoraphanin의 효과)

  • Jeon, Sang Kyu;Kim, Ok Hyeon;Park, Su Mi;Lee, Ju-Hee;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.28 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Objectives : Glucoraphanin is one of the well-known natural glucosinolates found in cruciferous plants. In the present study, we investigated the effects and molecular mechanism of glucoraphanin in dexamethasone-induced skeletal muscle atrophy in vitro model. Methods : The cytotoxic effects of glucoraphanin on C2C12 myoblasts or myotubes were evaluated by MTT assay. The glucoraphanin was evaluated effects in dexamethasone-induced skeletal muscle atrophy in C2C12 myotubes using a real-time PCR, western blots analysis, and immunofluorescence staining of myosin heavy chain. Result : Glucoraphanin had no cytotoxicity on both C2C12 myoblasts or myotubes. Dexamethasone markedly induced muscle atrophy by up-regulating muscle-specific ubiquitin E3 ligase markers, atrogin-1 and MuRF1, and down-regulating MyoD, a myogenic regulatory factor whereas co-treatment of glucoraphanin and dexamethasone dose-dependently inhibited it. Furthermore, decreased expressions of p-Akt, p-FOXO1, and p-FOXO3a induced by dexamethasone were reversed by co-treatment with glucoraphanin and dexamethasone. In addition, dexamethasone obviously reduced myotube diameters, while co-treatment of glucoraphanin and dexamethasone increased those to a similar level as control. Conclusions : These results show that glucoraphanin suppresses dexamethasone-induced muscle atrophy in C2C12 myotubes through activation of Akt/FOXO signaling pathway.

Trans-anethole Suppresses C2C12 Myoblast Differentiation

  • Mi-Ran Lee
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.190-200
    • /
    • 2023
  • Skeletal muscle, essential for metabolism, thermoregulation, and immunity, undergoes myogenic differentiation that results in myotube formation. Trans-anethole (TA), the major constituent in essential oil produced by anise, star anise, and fennel, whose function in skeletal muscle has not yet been elucidated. Therefore, we investigated whether TA influenced muscle differentiation in mouse C2C12 myoblasts. Cells were induced to differentiate using a differentiation medium with or without TA (50 or 200 mg/mL) daily for 5 days. We measured myotube length and diameter after differentiation days 1, 3, and 5 and analyzed the expression of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) using quantitative real-time PCR. Additionally, we observed the expression of total protein kinase B (Akt) and phosphorylated Akt (p-Akt) using western blotting. Our data showed that TA significantly induced the formation of smaller and thinner myotubes and reduced the myogenic factor expression. Furthermore, the atrogin-1 and MuRF-1 expression markedly increased by TA. Consistent with these findings, TA significantly decreased the expression of total Akt and p-Akt. Taken together, these results indicate that TA inhibits myogenic differentiation of C2C12 cells via reduction of both total Akt and p-Akt. Our findings may provide valuable insights into the impact of PAA on individuals at risk of muscle atrophy.

Effects of Schisandrae Fructus Supplementation on Apoptosis and Inflammatory Response in Gastrocnemius Muscle of Dexamethasone-Induced Muscle Atrophy Mice (Dexamethasone에 의하여 유발된 근육 위축 생쥐의 비복근 근섬유에서 apoptosis와 염증 반응에 미치는 오미자 추출물의 영향)

  • Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.25 no.3
    • /
    • pp.363-374
    • /
    • 2017
  • Dried fruits of Schizandra chinensis Baillon, Fructus Schisandrae, have been widely used for many years to prevent and treat various diseases in Asian countries including Korea and Russia. It has recently been reported that extracts of Fructus Schisandrae are effective for controlling muscle and skeletal diseases. In this study, we investigated the efficacy of ethanol extract of Fructus Schisandrae (EEFS) on apoptosis and inflammatory response in gastrocnemius muscle of dexamethasone-induced catabolic muscle atrophy mice as part of natural substance discovery and functional analysis for improving muscle function. According to the results of this study, EEFS supplementation attenuated body weight gains and suppressed calf thickness loss in dexamethasone-induced muscle atrophic mice. Gastrocnemius muscle immunohistochemistry showed that expression of caspase-3 and poly(ADP-ribose) polymerase, which are representative apoptotic markers, was markedly increased in dexamethasone control mice; however, their expression was effectively reduced in the EEFS-fed mice. EEFS supplementation also prevented dexamethasone-induced increases in immunoreactivity of muscle fibers for myostatin, an important negative regulator of skeletal muscle mass. In addition, EEFS significantly normalized the increased numbers of nitrotyrosine, 4-hydroxynonenal and inducible nitric oxide synthase-positive muscle fibers compared to that found in dexamethasone control mice. These results suggest that EEFS protects dexamethasone-induced muscular atrophy by decreasing apoptosis and inflammatory responses, and EEFS is more likely to be developed as a muscle strengthening agent.

Effect of Puerariae Radix on Hind Limb Muscle Atrophy of Sciatic Nerve Transectioned Rats (갈근(葛根)이 좌골신경 손상 흰쥐의 후지 근육위축에 미치는 영향)

  • Jang, Sung-Wook;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.405-411
    • /
    • 2009
  • This study evaluated the effects of Puerariae Radix on the skeletal muscle atrophy, Muscle atrophy was induced by the sciatic nerve transection in Sprague-Dawley rats, then aqueous-extract of Puerariae Radix was administered for 12 days, Muscle wet weight was measured in soleus, plantaris, and medial gastrocnemius. Muscle fiber type was classified by MHCf immunohistochemistry. Muscle fiber type proportion and cross section area of muscle fiber also was observed in medial gastrocnemius. Bax and Bcl-2 expressions in medial gastrocnemius of the damaged hind limb were evaluated with immunohistochemistry. The results are as follows; Puerariae Radix attenuated muscle atrophy in soleus of the sciatic nerve transectioned rats, but there was statistic significance. Puerariae Radix attenuated significantly atrophy in plantaris at 12 days and in medial gastrocnemius at 8 days and 12 days. Puerariae Radix improved histology of the atrophic changes and increased significantly cross section areas of type-I and type-II muscle fibers in medial gastrocnemius of the sciatic nerve transectioned rats. Puerariae Radix did not affect to muscle fiber type proportion in medial gastrocnemius of the sciatic nerve transectioned rats. Puerariae Radix attenuated significantly Bax positive nuclei but did not affect to Bcl-2 positive muscle fibers in medial gastrocnemius of the sciatic nerve transectioned rats.According to above results, Puerariae Radix may have an anti-atrophy effect on the denervated skeletal muscle through anti-apoptotic effects on muscle fibers.

Gene Expression According to Electromyostimulation after Atrophy Conditions and Muscle Atrophy in Skeletal Muscle

  • Park, Chang-Eun
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.49-55
    • /
    • 2012
  • Numerous biochemical molecules have been implicated in the development of muscular atrophy. However, control mechanisms associated with muscular disease are not clear. The present study was conducted to investigate gene expression profiles of rat muscle during the denervation to atrophy transition processes. We isolated total RNA from rats suffering from partial muscle atrophy (P) and electromyostimulated atrophy (PE) and synthesized cDNA using annealing control primers. Using 20 ACPs for PCR, we cloned 18 DEGs using TOPO TA cloning vector, sequenced, and analyzed their identities using BLAST search. Sequences of 14 clones significantly matched database entries, while one clone was ESTs, and 3 clones were unidentified. Different expression profiles of selected DEGs between P and PE were confirmed. The troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1 and Commd3 were highly expressed genes in the P and PE groups, while Krox-25 and TCOX2 were only expressed genes in the P group, the Sv2b and Marcks were only expressed genes in PE group. also, Cox8h was highly expressed genes in PE groups. The ASPH, ND1, and ARPL1 were highly expressed genes in the P and PE groups. List of genes obtained from the present study might provide an insight for the study of mechanism regulating muscle atrophy and electrostimulated muscle atrophy transitions. These data suggest that troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1, and Commd3 are potentially useful as clinical biomarkers of age-related muscle atrophy and dysfunction.

Role of IL-15 in Sepsis-Induced Skeletal Muscle Atrophy and Proteolysis

  • Kim, Ho Cheol;Cho, Hee-Young;Hah, Young-Sool
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.6
    • /
    • pp.312-319
    • /
    • 2012
  • Background: Muscle wasting in sepsis is associated with increased proteolysis. Interleukin-15 (IL-15) has been characterized as an anabolic factor for skeletal muscles. Our study aims to investigate the role of IL-15 in sepsis-induced muscle atrophy and proteolysis. Methods: Mice were rendered septic either by cecal ligation and puncture or by intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg i.p.). Expression of IL-15 mRNA and protein was determined by reverse transcriptase polymerase chain reaction and Western blot analysis in the control and septic limb muscles. C2C12 skeletal muscle cells were stimulated in vitro with either LPS or dexamethasone in the presence and absence of IL-15 and sampled at different time intervals (24, 48, or 72 hours). IL-15 ($10{\mu}g/kg$) was intraperitoneally administered 6 hours before sepsis induction and limb muscles were sampled after 24 hours of sepsis. Cathepsin L activity was determined to measure muscle proteolysis. Atrogin-1 and muscle-specific ring finger protein 1 (MuRF1) expressions in limb muscle protein lysates was analyzed. Results: IL-15 mRNA expression was significantly lower in the limb muscles of septic mice compared to that of controls. Cathepsin L activity in C2C12 cells was significantly lower in presence of IL-15, when compared to that observed with individual treatments of LPS or dexamethasone or tumor necrosis factor ${\alpha}$. Further, the limb muscles of mice pre-treated with IL-15 prior to sepsis induction showed a lower expression of atrogin-1 and MuRF1 than those not pre-treated. Conclusion: IL-15 may play a role in protection against sepsis-induced muscle wasting; thereby, serving as a potential therapeutic target for sepsis-induced skeletal muscle wasting and proteolysis.

The role of myokines in cancer: crosstalk between skeletal muscle and tumor

  • Se-Young Park;Byeong-Oh Hwang;Na-Young Song
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.365-373
    • /
    • 2023
  • Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscle-to-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer.

Sarcopenia targeting with autophagy mechanism by exercise

  • Park, Sung Sup;Seo, Young-Kyo;Kwon, Ki-Sun
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.64-69
    • /
    • 2019
  • The loss of skeletal muscle, called sarcopenia, is an inevitable event during the aging process, and significantly impacts quality of life. Autophagy is known to reduce muscle atrophy caused by dysfunctional organelles, even though the molecular mechanism remains unclear. Here, we have discuss the current understanding of exercise-induced autophagy activation in skeletal muscle regeneration and remodeling, leading to sarcopenia intervention. With aging, dysregulation of autophagy flux inhibits lysosomal storage processes involved in muscle biogenesis. AMPK-ULK1 and the $FoxO/PGC-1{\alpha}$ signaling pathways play a critical role in the induction of autophagy machinery in skeletal muscle, thus these pathways could be targets for therapeutics development. Autophagy has been also shown to be a critical regulator of stem cell fate, which determines satellite cell differentiation into muscle fiber, thereby increasing muscle mass. This review aims to provide a comprehensive understanding of the physiological role of autophagy in skeletal muscle aging and sarcopenia.

The effects of aqua-exercise on the muscle atrophy of hind limb in rats

  • Cho sun-yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.3
    • /
    • pp.373-406
    • /
    • 2002
  • This study was peformed to investigate the effects on skeletal muscle recovery with aqua-exercise; swimming to take the muscle endurance for 20 days on two group of white rats which were the low extremity atrophy group(control groups) by fixed for two weeks and aqua-exercise group(experimental groups) after it. The effects was observed with light and electron microcope to measure the morphological changes of muscle fibers. The results obtained were as follow. 1. Light microscope: In the case of control groups, quadriceps fibers had been irregular alignment, decreased muscle width and the irregular alignment nuclear appeared, as it is degenerative muscle fibers. In the case of experimental groups, the fibers had been regular alignment cells and fibers. The nucleus of muscle had been normal characterized by oval shape and fiber sarcomere clearly classified. 2. Electron microscope: In the case of control groups, there were the quadriceps which was Z-line streaming phenomenon induced at the sarcomere and cells nuclear separated from basal membrane. It was not only observed the sarcomere alignment irregularly and mitochondria damaged, but also vacuoles found. In the case of experimental groups, A band, I band, H band had been clearly appeared, classified at the myofibrils of quadriceps, and electronic dense M-line found in sarcomere. There were observed satellite cells and basal laminas that usually to be appeared at the time of mitochondrial development, skeletal muscle fiber regeneration or development. This results suggest that the aqua-exercise assisted to inhibit the degenerative morphological changes of skeletal muscle cells and help to recover from abnormal states. Especially, it is considered to effect on a normal structural formation.

  • PDF

Effects of polysaccharide (polycan) derived from black yeast in dexamethasone-induced muscle atrophy cell model (Dexamethasone으로 유도한 근위축 세포모델에서 흑효모 배양물 유래 polycan의 근위축 개선에 대한 효과)

  • Hwang, Su-Jin;Lim, Jong-Min;Ku, Bon-Hwa;Cheon, Da-Mi;Jung, Yu Jin;Kim, Young-Suk;Oh, Tae Woo
    • Herbal Formula Science
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • Objectives : This study was conducted to evaluate the anti-atrophic effect of polycan in dexamethasone-induced skeletal muscle atrophy in vitro model. Methods : C2C12 myoblast were differentiated into myotube by 2% horese serum medium for 6 days, and then treated polycan extract at different concentrations for 24h. The effect of dexamethasone on the induction of muscle atrophy and expression of atrophy-related genes in differentiated C2C12 myotubes using a GSH, ROS, real-time PCR, western blots analysis. Results : The results showed that Treatment with polycan (100 and 200 ㎍/㎖) noncytotoxic levels on both myoblast and myotube. Polycan decreased the ROS level overproduced with dexamethasone and improved the depletion of GSH level. Dexamethasone showed a decrease in myotube diameter, which was associated with up-regulation muscle-specific ubiquitin ligases markers, such as atrogin-1, FoxO3, myostatin and muscle RING finger-1 (MuRF1), and down-regulation of myogenin, MEF2, Myogenic regulatory factor 5, 6 and MyoD. The results showed that polycan treatment significantly dose-dependently inhibited it. Furthermore, decreased expressions of PI3K/Akt signal pathway by dexamethasone were reversed by treatment with polycan. Conclusions : Thus, polycan suppresses dexamethasone induced muscle atrophy in C2C12 myotube in vitro model through activation of PI3K/Akt pathway and protective effect of improve skeletal muscle function.