DOI QR코드

DOI QR Code

The role of myokines in cancer: crosstalk between skeletal muscle and tumor

  • Se-Young Park (Department of Applied Life Science, The Graduate School, Yonsei University) ;
  • Byeong-Oh Hwang (Department of Applied Life Science, The Graduate School, Yonsei University) ;
  • Na-Young Song (Department of Applied Life Science, The Graduate School, Yonsei University)
  • Received : 2023.04.16
  • Accepted : 2023.06.01
  • Published : 2023.07.31

Abstract

Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscle-to-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer.

Keywords

Acknowledgement

This research was supported by National Research Foundation of Korea (NRF) Grants funded by the Korean Government (grant numbers NRF-2020R1C1C1003338 and NRF-2022M3A9F3016364 to NYS), and by the Yonsei Signature Research Cluster Program (2023-22-0011).

References

  1. Frontera WR and Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96, 183-195  https://doi.org/10.1007/s00223-014-9915-y
  2. Cohen S, Nathan JA and Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14, 58-74  https://doi.org/10.1038/nrd4467
  3. Prokopidis K, Giannos P, Reginster JY et al (2023) Sarcopenia is associated with a greater risk of polypharmacy and number of medications: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 14, 671-683  https://doi.org/10.1002/jcsm.13190
  4. Iizuka K, Machida T and Hirafuji M (2014) Skeletal muscle is an endocrine organ. J Pharmacol Sci 125, 125-131  https://doi.org/10.1254/jphs.14R02CP
  5. Pedersen BK and Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8, 457-465  https://doi.org/10.1038/nrendo.2012.49
  6. Severinsen MCK and Pedersen BK (2020) Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev 41, 594-609  https://doi.org/10.1210/endrev/bnaa016
  7. Argiles JM, Busquets S, Stemmler B and Lopez-Soriano FJ (2015) Cachexia and sarcopenia: mechanisms and potential targets for intervention. Curr Opin Pharmacol 22, 100-106  https://doi.org/10.1016/j.coph.2015.04.003
  8. Baracos VE, Martin L, Korc M, Guttridge DC and Fearon KCH (2018) Cancer-associated cachexia. Nat Rev Dis Primers 4, 17105 
  9. Ali S and Garcia JM (2014) Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options - a mini-review. Gerontology 60, 294-305  https://doi.org/10.1159/000356760
  10. Greten FR and Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27-41  https://doi.org/10.1016/j.immuni.2019.06.025
  11. Narsale AA and Carson JA (2014) Role of interleukin-6 in cachexia: therapeutic implications. Curr Opin Support Palliat Care 8, 321-327  https://doi.org/10.1097/SPC.0000000000000091
  12. Patel HJ and Patel BM (2017) TNF-alpha and cancer cachexia: molecular insights and clinical implications. Life Sci 170, 56-63  https://doi.org/10.1016/j.lfs.2016.11.033
  13. Karayiannakis AJ, Syrigos KN, Polychronidis A, Pitiakoudis M, Bounovas A and Simopoulos K (2001) Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients. Anticancer Res 21, 1355-1358 
  14. Okada S, Okusaka T, Ishii H et al (1998) Elevated serum interleukin-6 levels in patients with pancreatic cancer. Jpn J Clin Oncol 28, 12-15  https://doi.org/10.1093/jjco/28.1.12
  15. Srdic D, Plestina S, Sverko-Peternac A, Nikolac N, Simundic AM and Samarzija M (2016) Cancer cachexia, sarcopenia and biochemical markers in patients with advanced non-small cell lung cancer-chemotherapy toxicity and prognostic value. Support Care Cancer 24, 4495-4502  https://doi.org/10.1007/s00520-016-3287-y
  16. Bilir C, Engin H, Can M, Temi YB and Demirtas D (2015) The prognostic role of inflammation and hormones in patients with metastatic cancer with cachexia. Med Oncol 32, 56 
  17. Utech AE, Tadros EM, Hayes TG and Garcia JM (2012) Predicting survival in cancer patients: the role of cachexia and hormonal, nutritional and inflammatory markers. J Cachexia Sarcopenia Muscle 3, 245-251  https://doi.org/10.1007/s13539-012-0075-5
  18. Matsuyama T, Ishikawa T, Okayama T et al (2015) Tumor inoculation site affects the development of cancer cachexia and muscle wasting. Int J Cancer 137, 2558-2565  https://doi.org/10.1002/ijc.29620
  19. Rupert JE, Narasimhan A, Jengelley DHA et al (2021) Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med 218, e20190450 
  20. Pototschnig I, Feiler U, Diwoky C et al (2023) Interleukin-6 initiates muscle- and adipose tissue wasting in a novel C57BL/6 model of cancer-associated cachexia. J Cachexia Sarcopenia Muscle 14, 93-107  https://doi.org/10.1002/jcsm.13109
  21. Kang EA, Park JM, Jin W, Tchahc H, Kwon KA and Hahm KB (2022) Amelioration of cancer cachexia with preemptive administration of tumor necrosis factor-alpha blocker. J Clin Biochem Nutr 70, 117-128  https://doi.org/10.3164/jcbn.21-21
  22. Choi MH and Yoon SB (2022) Sarcopenia in pancreatic cancer: effect on patient outcomes. World J Gastrointest Oncol 14, 2302-2312  https://doi.org/10.4251/wjgo.v14.i12.2302
  23. Fang P, Zhou J, Xiao X et al (2023) The prognostic value of sarcopenia in oesophageal cancer: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 14, 3-16  https://doi.org/10.1002/jcsm.13126
  24. Omori A, Kawakubo N, Takemoto J et al (2022) Effects of changes in skeletal muscle mass on the prognosis of pediatric malignant solid tumors. Pediatr Surg Int 38, 1829-1838  https://doi.org/10.1007/s00383-022-05225-9
  25. Becker JN, Hermann R, Wichmann J, Sonnhoff M, Christiansen H and Bruns F (2023) Low skeletal muscle mass is predictive of dose-limiting toxicities in head and neck cancer patients undergoing low-dose weekly cisplatin chemoradiotherapy. PLoS One 18, e0282015 
  26. de Jong C, Chargi N, Herder GJM et al (2022) The association between skeletal muscle measures and chemotherapy-induced toxicity in non-small cell lung cancer patients. J Cachexia Sarcopenia Muscle 13, 1554-1564  https://doi.org/10.1002/jcsm.12967
  27. Surov A, Pech M, Gessner D et al (2021) Low skeletal muscle mass is a predictor of treatment related toxicity in oncologic patients. A meta-analysis. Clin Nutr 40, 5298-5310  https://doi.org/10.1016/j.clnu.2021.08.023
  28. Murphy KT, Swiderski K, Ryall JG et al (2021) Mechanisms of chemotherapy-induced muscle wasting in mice with cancer cachexia. JCSM Rapid Communications 5, 102-116  https://doi.org/10.1002/rco2.50
  29. Cortellini A, Bozzetti F, Palumbo P et al (2020) Weighing the role of skeletal muscle mass and muscle density in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: a multicenter real-life study. Sci Rep 10, 1456 
  30. Li S, Liu Z, Ren Y et al (2022) Sarcopenia was a poor prognostic predictor for patients with advanced lung cancer treated with immune checkpoint inhibitors. Front Nutr 9, 900823 
  31. Hoffmann C and Weigert C (2017) Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med 7, a029793 
  32. McTiernan A, Friedenreich CM, Katzmarzyk PT et al (2019) Physical activity in cancer prevention and survival: a systematic review. Med Sci Sports Exerc 51, 1252-1261  https://doi.org/10.1249/MSS.0000000000001937
  33. Moore SC, Lee IM, Weiderpass E et al (2016) Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med 176, 816-825  https://doi.org/10.1001/jamainternmed.2016.1548
  34. Aoi W, Naito Y, Takagi T et al (2013) A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 62, 882-889  https://doi.org/10.1136/gutjnl-2011-300776
  35. Kim JS, Taaffe DR, Galvao DA et al (2022) Acute effect of high-intensity interval aerobic exercise on serum myokine levels and resulting tumour-suppressive effect in trained patients with advanced prostate cancer. Prostate Cancer Prostatic Dis doi: 10.1038/s41391-022-00624-4 
  36. Kim J-S, Galvao DA, Newton RU, Gray E and Taaffe DR (2021) Exercise-induced myokines and their effect on prostate cancer. Nat Rev Urol 18, 519-542  https://doi.org/10.1038/s41585-021-00476-y
  37. Huang Q, Wu M, Wu X, Zhang Y and Xia Y (2022) Muscle-to-tumor crosstalk: the effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 1877, 188761 
  38. Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463-468  https://doi.org/10.1038/nature10777
  39. Huh JY, Panagiotou G, Mougios V et al (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61, 1725-1738  https://doi.org/10.1016/j.metabol.2012.09.002
  40. Provatopoulou X, Georgiou GP, Kalogera E et al (2015) Serum irisin levels are lower in patients with breast cancer: association with disease diagnosis and tumor characteristics. BMC Cancer 15, 898 
  41. Pazgan-Simon M, Zuwala-Jagiello J, Kukla M, Grzebyk E and Simon K (2020) Serum concentrations of selected adipokines in virus-related liver cirrhosis and hepatocellular carcinoma. Clin Exp Hepatol 6, 235-242  https://doi.org/10.5114/ceh.2020.99517
  42. Gannon NP, Vaughan RA, Garcia-Smith R, Bisoffi M and Trujillo KA (2015) Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer 136, 197-202  https://doi.org/10.1002/ijc.29142
  43. Shao L, Li H, Chen J et al (2017) Irisin suppresses the migration, proliferation, and invasion of lung cancer cells via inhibition of epithelial-to-mesenchymal transition. Biochem Biophys Res Commun 485, 598-605  https://doi.org/10.1016/j.bbrc.2016.12.084
  44. Zhang Y and Weinberg RA (2018) Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med 12, 361-373  https://doi.org/10.1007/s11684-018-0656-6
  45. Xu L, Ye Y, Sun Y et al (2022) Low FNDC5/Irisin expression is associated with aggressive phenotypes in gastric cancer. Front Pharmacol 13, 981201 
  46. Alizadeh Zarei M, Seyed Hosseini E, Haddad Kashani H, Ahmad E and Nikzad H (2023) Effects of the exercise-inducible myokine irisin on proliferation and malignant properties of ovarian cancer cells through the HIF-1 alpha signaling pathway. Sci Rep 13, 170 
  47. Huang CW, Chang YH, Lee HH et al (2020) Irisin, an exercise myokine, potently suppresses tumor proliferation, invasion, and growth in glioma. FASEB J 34, 9678-9693  https://doi.org/10.1096/fj.202000573RR
  48. Esawy MM and Abdel-Samd KM (2020) The diagnostic and prognostic roles of serum irisin in bladder cancer. Curr Probl Cancer 44, 100529 
  49. Sofeu Feugaing DD, Gotte M and Viola M (2013) More than matrix: the multifaceted role of decorin in cancer. Eur J Cell Biol 92, 1-11  https://doi.org/10.1016/j.ejcb.2012.08.004
  50. Heinemeier KM, Bjerrum SS, Schjerling P and Kjaer M (2013) Expression of extracellular matrix components and related growth factors in human tendon and muscle after acute exercise. Scand J Med Sci Sports 23, 150-161  https://doi.org/10.1111/j.1600-0838.2011.01414.x
  51. Kanzleiter T, Rath M, Gorgens SW et al (2014) The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem Biophys Res Commun 450, 1089-1094  https://doi.org/10.1016/j.bbrc.2014.06.123
  52. Neill T, Schaefer L and Iozzo RV (2015) Decoding the matrix: instructive roles of proteoglycan receptors. Biochemistry 54, 4583-4598  https://doi.org/10.1021/acs.biochem.5b00653
  53. Bi X, Pohl NM, Qian Z et al (2012) Decorin-mediated inhibition of colorectal cancer growth and migration is associated with E-cadherin in vitro and in mice. Carcinogenesis 33, 326-330  https://doi.org/10.1093/carcin/bgr293
  54. Hu X, Villodre ES, Larson R et al (2021) Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. Commun Biol 4, 72 
  55. Chen H, Wang Z, Yang N, Zhang J and Liang Z (2022) Decorin inhibits proliferation and metastasis in human bladder cancer cells by upregulating P21. Medicine (Baltimore) 101, e29760 
  56. Jia Y, Feng Q, Tang B et al (2021) Decorin suppresses invasion and EMT phenotype of glioma by inducing autophagy via c-Met/Akt/mTOR axis. Front Oncol 11, 659353 
  57. Buraschi S, Pal N, Tyler-Rubinstein N, Owens RT, Neill T and Iozzo RV (2010) Decorin antagonizes Met receptor activity and down-regulates beta-catenin and Myc levels. J Biol Chem 285, 42075-42085  https://doi.org/10.1074/jbc.M110.172841
  58. Reed CC, Waterhouse A, Kirby S et al (2005) Decorin prevents metastatic spreading of breast cancer. Oncogene 24, 1104-1110  https://doi.org/10.1038/sj.onc.1208329
  59. Grant DS, Yenisey C, Rose RW, Tootell M, Santra M and Iozzo RV (2002) Decorin suppresses tumor cell-mediated angiogenesis. Oncogene 21, 4765-4777  https://doi.org/10.1038/sj.onc.1205595
  60. Basak D, Jamal Z, Ghosh A et al (2021) Reciprocal interplay between asporin and decorin: implications in gastric cancer prognosis. PLoS One 16, e0255915 
  61. Troup S, Njue C, Kliewer EV et al (2003) Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res 9, 207-214 
  62. Di Sabatino A, Calarota SA, Vidali F, Macdonald TT and Corazza GR (2011) Role of IL-15 in immune-mediated and infectious diseases. Cytokine Growth Factor Rev 22, 19-33  https://doi.org/10.1016/j.cytogfr.2010.09.003
  63. Tamura Y, Watanabe K, Kantani T, Hayashi J, Ishida N and Kaneki M (2011) Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocr J 58, 211-215  https://doi.org/10.1507/endocrj.K10E-400
  64. Riechman SE, Balasekaran G, Roth SM and Ferrell RE (2004) Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol (1985) 97, 2214-2219  https://doi.org/10.1152/japplphysiol.00491.2004
  65. Nielsen AR, Mounier R, Plomgaard P et al (2007) Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 584, 305-312  https://doi.org/10.1113/jphysiol.2007.139618
  66. Luo Z, He Z, Qin H et al (2022) Exercise-induced IL-15 acted as a positive prognostic implication and tumor-suppressed role in pan-cancer. Front Pharmacol 13, 1053137 
  67. Reyes AF, Goldusky J, Bhimalli P, Marzo AL and Schneider JR (2022) Tracking fluorescently labeled IL-15 and anti-PD-1 in the tumor microenvironment and draining lymph nodes. J Immunol Methods 505, 113253 
  68. Stravokefalou V, Stellas D, Karaliota S et al (2022) Heterodimeric IL-15 (hetIL-15) reduces circulating tumor cells and metastasis formation improving chemotherapy and surgery in 4T1 mouse model of TNBC. Front Immunol 13, 1014802 
  69. Miljkovic MD, Dubois SP, Muller JR et al (2023) Interleukin-15 augments NK cell-mediated ADCC of alemtuzumab in patients with CD52+ T-cell malignancies. Blood Adv 7, 384-394  https://doi.org/10.1182/bloodadvances.2021006440
  70. Kurz E, Hirsch CA, Dalton T et al (2022) Exercise-induced engagement of the IL-15/IL-15Ralpha axis promotes antitumor immunity in pancreatic cancer. Cancer Cell 40, 720-737 e725 
  71. Bradshaw AD and Sage EH (2001) SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107, 1049-1054  https://doi.org/10.1172/JCI12939
  72. Miyamoto T, Shimizu Y, Matsuo Y et al (2022) Effects of exercise intensity and duration on a myokine, secreted protein acidic and rich in cysteine. Eur J Sport Sci 22, 1401-1410  https://doi.org/10.1080/17461391.2021.1953152
  73. Matsuo K, Sato K, Suemoto K et al (2017) A mechanism underlying preventive effect of high-intensity training on colon cancer. Med Sci Sports Exerc 49, 1805-1816  https://doi.org/10.1249/MSS.0000000000001312
  74. Yiu GK, Chan WY, Ng SW et al (2001) SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. Am J Pathol 159, 609-622  https://doi.org/10.1016/S0002-9440(10)61732-4
  75. Brekken RA, Puolakkainen P, Graves DC, Workman G, Lubkin SR and Sage EH (2003) Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM. J Clin Invest 111, 487-495  https://doi.org/10.1172/JCI16804
  76. Schultz C, Lemke N, Ge S, Golembieski WA and Rempel SA (2002) Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo. Cancer Res 62, 6270-6277 
  77. Puolakkainen PA, Brekken RA, Muneer S and Sage EH (2004) Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Mol Cancer Res 2, 215-224  https://doi.org/10.1158/1541-7786.215.2.4
  78. Ma J, Ma Y, Chen S et al (2021) SPARC enhances 5-FU chemosensitivity in gastric cancer by modulating epithelial-mesenchymal transition and apoptosis. Biochem Biophys Res Commun 558, 134-140  https://doi.org/10.1016/j.bbrc.2021.04.009
  79. Zhang JL, Chen GW, Liu YC et al (2012) Secreted protein acidic and rich in cysteine (SPARC) suppresses angiogenesis by down-regulating the expression of VEGF and MMP-7 in gastric cancer. PLoS One 7, e44618 
  80. Said N, Frierson H, Chernauskas D, Conaway M, Motamed K and Theodorescu D (2009) The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene 28, 3487-3498  https://doi.org/10.1038/onc.2009.205
  81. Rahman M, Chan AP, Tang M and Tai IT (2011) A peptide of SPARC interferes with the interaction between caspase8 and Bcl2 to resensitize chemoresistant tumors and enhance their regression in vivo. PLoS One 6, e26390 
  82. Feng J and Tang L (2014) SPARC in tumor pathophysiology and as a potential therapeutic target. Curr Pharm Des 20, 6182-6190  https://doi.org/10.2174/1381612820666140619123255
  83. Grant JL, Fishbein MC, Hong LS et al (2014) A novel molecular pathway for snail-dependent, SPARC-mediated invasion in non-small cell lung cancer pathogenesis. Cancer Prev Res (Phila) 7, 150-160  https://doi.org/10.1158/1940-6207.CAPR-13-0263
  84. Lopez-Moncada F, Torres MJ, Lavanderos B, Cerda O, Castellon EA and Contreras HR (2022) SPARC induces E-cadherin repression and enhances cell migration through integrin alphavbeta3 and the transcription factor ZEB1 in prostate cancer cells. Int J Mol Sci 23, 5874 
  85. Tichet M, Prod'Homme V, Fenouille N et al (2015) Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nat Commun 6, 6993 
  86. Gao ZW, Liu C, Yang L et al (2021) SPARC Overexpression promotes liver cancer cell proliferation and tumor growth. Front Mol Biosci 8, 775743 
  87. Pan K, Huang X and Jia X (2021) SPARC promotes pancreatic cancer cell proliferation and migration through autocrine secretion into the extracellular milieu. Oncol Lett 21, 485 
  88. Arnold SA and Brekken RA (2009) SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 3, 255-273  https://doi.org/10.1007/s12079-009-0072-4
  89. Neuzillet C, Tijeras-Raballand A, Cros J, Faivre S, Hammel P and Raymond E (2013) Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer Metastasis Rev 32, 585-602  https://doi.org/10.1007/s10555-013-9439-3
  90. Richards CD (2013) The enigmatic cytokine oncostatin m and roles in disease. ISRN Inflamm 2013, 512103 
  91. Hwang JH, McGovern J, Minett GM et al (2020) Mobilizing serum factors and immune cells through exercise to counteract age-related changes in cancer risk. Exerc Immunol Rev 26, 80-99 
  92. Pan CM, Wang ML, Chiou SH, Chen HY and Wu CW (2016) Oncostatin M suppresses metastasis of lung adenocarcinoma by inhibiting SLUG expression through coordination of STATs and PIASs signalings. Oncotarget 7, 60395 
  93. Grant SL, Hammacher A, Douglas AM et al (2002) An unexpected biochemical and functional interaction between gp130 and the EGF receptor family in breast cancer cells. Oncogene 21, 460-474  https://doi.org/10.1038/sj.onc.1205100
  94. Halfter H, Friedrich M, Resch A et al (2006) Oncostatin M induces growth arrest by inhibition of Skp2, Cks1, and cyclin A expression and induced p21 expression. Cancer Res 66, 6530-6539  https://doi.org/10.1158/0008-5472.CAN-04-3734
  95. Friedrich M, Hoss N, Stogbauer F et al (2001) Complete inhibition of in vivo glioma growth by oncostatin M. J Neurochem 76, 1589-1592  https://doi.org/10.1046/j.1471-4159.2001.00202.x
  96. Kim JS, Wilson RL, Taaffe DR, Galvao DA, Gray E and Newton RU (2022) Myokine expression and tumor-suppressive effect of serum after 12 wk of exercise in prostate cancer patients on ADT. Med Sci Sports Exerc 54, 197 
  97. Hojman P, Dethlefsen C, Brandt C, Hansen J, Pedersen L and Pedersen BK (2011) Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol Endocrinol Metab 301, E504-E510  https://doi.org/10.1152/ajpendo.00520.2010
  98. Wang ML, Pan CM, Chiou SH et al (2012) Oncostatin m modulates the mesenchymal-epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect. Cancer Res 72, 6051-6064  https://doi.org/10.1158/0008-5472.CAN-12-1568
  99. Tripathi C, Tewari BN, Kanchan RK et al (2014) Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 5, 5350-5368  https://doi.org/10.18632/oncotarget.2110
  100. Araujo AM, Abaurrea A, Azcoaga P et al (2022) Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment. J Clin Invest 132, 148667 
  101. Li Q, Zhu J, Sun F, Liu L, Liu X and Yue Y (2011) Oncostatin M promotes proliferation of ovarian cancer cells through signal transducer and activator of transcription 3. Int J Mol Med 28, 101-108 
  102. Mori S, Murakami-Mori K and Bonavida B (1999) Oncostatin M (OM) promotes the growth of DU 145 human prostate cancer cells, but not PC-3 or LNCaP, through the signaling of the OM specific receptor. Anticancer Res 19, 1011-1015 
  103. Smigiel JM, Parameswaran N and Jackson MW (2017) Potent EMT and CSC phenotypes are induced by oncostatin-M in pancreatic cancer. Mol Cancer Res 15, 478-488  https://doi.org/10.1158/1541-7786.MCR-16-0337
  104. Kucia-Tran JA, Tulkki V, Smith S et al (2016) Overexpression of the oncostatin-M receptor in cervical squamous cell carcinoma is associated with epithelial-mesenchymal transition and poor overall survival. Br J Cancer 115, 212-222  https://doi.org/10.1038/bjc.2016.199
  105. Smith DA, Kiba A, Zong Y and Witte ON (2013) Interleukin-6 and oncostatin-M synergize with the PI3K/AKT pathway to promote aggressive prostate malignancy in mouse and human tissues. Mol Cancer Res 11, 1159-1165  https://doi.org/10.1158/1541-7786.MCR-13-0238
  106. Lapeire L, Hendrix A, Lambein K et al (2014) Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res 74, 6806-6819  https://doi.org/10.1158/0008-5472.CAN-14-0160
  107. Lacreusette A, Nguyen JM, Pandolfino MC et al (2007) Loss of oncostatin M receptor beta in metastatic melanoma cells. Oncogene 26, 881-892  https://doi.org/10.1038/sj.onc.1209844
  108. Bathina S and Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11, 1164-1178  https://doi.org/10.5114/aoms.2015.56342
  109. Gomez-Pinilla F, Ying Z, Roy RR, Molteni R and Edgerton VR (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88, 2187-2195  https://doi.org/10.1152/jn.00152.2002
  110. Clow C and Jasmin BJ (2010) Brain-derived neurotrophic factor regulates satellite cell differentiation and skeltal muscle regeneration. Mol Biol Cell 21, 2182-2190  https://doi.org/10.1091/mbc.e10-02-0154
  111. Miknyoczki SJ, Lang D, Huang L, Klein-Szanto AJ, Dionne CA and Ruggeri BA (1999) Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int J Cancer 81, 417-427  https://doi.org/10.1002/(SICI)1097-0215(19990505)81:3<417::AID-IJC16>3.0.CO;2-6
  112. Sinkevicius KW, Kriegel C, Bellaria KJ et al (2014) Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci U S A 111, 10299-10304  https://doi.org/10.1073/pnas.1404399111
  113. Shen T, Cheng X, Xia C et al (2019) Erlotinib inhibits colon cancer metastasis through inactivation of TrkB-dependent ERK signaling pathway. J Cell Biochem 120, 11248-11255  https://doi.org/10.1002/jcb.28400
  114. Zhang SY, Hui LP, Li CY, Gao J, Cui ZS and Qiu XS (2016) More expression of BDNF associates with lung squamous cell carcinoma and is critical to the proliferation and invasion of lung cancer cells. BMC Cancer 16, 171 
  115. Matthews VB, Astrom MB, Chan MH et al (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52, 1409-1418  https://doi.org/10.1007/s00125-009-1364-1
  116. Ibeas K, Herrero L, Mera P and Serra D (2021) Hypothalamus-skeletal muscle crosstalk during exercise and its role in metabolism modulation. Biochem Pharmacol 190, 114640 
  117. Xiao R, Bergin SM, Huang W et al (2016) Environmental and genetic activation of hypothalamic BDNF modulates T-cell immunity to exert an anticancer phenotype. Cancer Immunol Res 4, 488-497  https://doi.org/10.1158/2326-6066.CIR-15-0297
  118. Cao L, Liu X, Lin EJ et al (2010) Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142, 52-64  https://doi.org/10.1016/j.cell.2010.05.029
  119. Garofalo S, D'Alessandro G, Chece G et al (2015) Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice. Nat Commun 6, 6623 
  120. Fang P, She Y, Yu M, Min W, Shang W and Zhang Z (2023) Adipose-muscle crosstalk in age-related metabolic disorders: the emerging roles of adipo-myokines. Ageing Res Rev 84, 101829 
  121. Jena BP, Larsson L, Gatti DL, Ghiran I and Cho WJ (2022) Understanding brain-skeletal muscle crosstalk impacting metabolism and movement. Discoveries (Craiova) 10, e144