Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022M3A9B6082667).
References
- Chen Y, Pu Q, Ma Y et al (2021) Aging reprograms the hematopoietic-vascular niche to impede regeneration and promote fibrosis. Cell Metab 33, 395-410 e394
- Davidson MD, Burdick JA and Wells RG (2020) Engineered biomaterial platforms to study fibrosis. Adv Healthc Mater 9, e1901682
- Zhao X, Kwan JYY, Yip K, Liu PP and Liu FF (2020) Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov 19, 57-75 https://doi.org/10.1038/s41573-019-0040-5
- Lee J and Im S (2022) Function of gaseous hydrogen sulfide in liver fibrosis. BMB Rep 55, 481-487 https://doi.org/10.5483/BMBRep.2022.55.10.124
- Lee S and Yoo T (2022) Therapeutic application of extracellular vesicles for various kidney diseases: a brief review. BMB Rep 55, 3-10 https://doi.org/10.5483/BMBRep.2022.55.1.141
- Qin XJ, Zhang JX and Wang RL (2020) Exosomes as mediators and biomarkers in fibrosis. Biomark Med 14, 697-712 https://doi.org/10.2217/bmm-2019-0368
- Brigstock DR (2021) Extracellular vesicles in organ fibrosis: mechanisms, therapies, and diagnostics. Cells 10, 1596
- Barinotti A, Radin M, Cecchi I et al (2022) Serum Biomarkers of renal fibrosis: a systematic review. Int J Mol Sci 23, 14139
- Caligiuri A, Gentilini A, Pastore M, Gitto S and Marra F (2021) Cellular and molecular mechanisms underlying liver fibrosis regression. Cells 10, 2759
- Ulukan B, Sila Ozkaya Y and Zeybel M (2019) Advances in the epigenetics of fibroblast biology and fibrotic diseases. Curr Opin Pharmacol 49, 102-109 https://doi.org/10.1016/j.coph.2019.10.001
- Xue T, Qiu X, Liu H et al (2021) Epigenetic regulation in fibrosis progress. Pharmacol Res 173, 105910
- Yang Z, Zhang H, Yin M et al (2022) TGF-β1/Smad3 upregulates UCA1 to promote liver fibrosis through DKK1 and miR18a. J Mol Med (Berl) 100, 1465-1478 https://doi.org/10.1007/s00109-022-02248-6
- Xia W, He Y, Gan Y et al (2021) Long non-coding RNA: an emerging contributor and potential therapeutic target in renal fibrosis. Front Genet 12, 682904
- Chen T, Shi Z, Zhao Y et al (2022) LncRNA airn maintains LSEC differentiation to alleviate liver fibrosis via the KLF2- eNOS-sGC pathway. BMC Med 20, 335
- Ye Y, Wu W, Zheng J, Zhang L and Wang B (2022) Role of long non-coding RNA-adducin 3 antisense RNA1 in liver fibrosis of biliary atresia. Bioengineered 13, 6222-6230 https://doi.org/10.1080/21655979.2022.2041321
- Navarro-Corcuera A, Sehrawat TS, Jalan-Sakrikar N et al (2022) Long non-coding RNA ACTA2-AS1 promotes duc-tular reaction by interacting with the p300/ELK1 complex. J Hepatol 76, 921-933 https://doi.org/10.1016/j.jhep.2021.12.014
- Zhang Y, Zhang H, Hu L, Wei J and Ma C (2022) lncRNA TUG1 regulates hyperuricemia-induced renal fibrosis in a rat model. Acta Biochim Biophys Sin (Shanghai) 54, 1365-1375 https://doi.org/10.3724/abbs.2022128
- Luo Q, Xia X, Luo Q et al (2022) Long noncoding RNA MEG3-205/Let-7a/MyD88 axis promotes renal inflammation and fibrosis in diabetic nephropathy. Kidney Dis (Basel) 8, 231-245 https://doi.org/10.1159/000523847
- Cao L, Qu N, Wang X, Chen L and Liu M (2023) The function of long non-coding RNA in non-alcoholic fatty liver disease. Clin Res Hepatol Gastroenterol 47, 102095
- Xiang Z, Liqing Y, Qingqing Y, Qiang H and Hongbo C (2022) Retard or exacerbate: role of long non-coding RNA growth arrest-specific 5 in the fibrosis. Cytokine Growth Factor Rev 67, 89-104 https://doi.org/10.1016/j.cytogfr.2022.06.001
- Sen I, Uchida S and Garikipati VNS (2023) Long noncoding RNA lnc-CHAF1B-3 as a new player in fibrosis. Mol Ther Nucleic Acids 31, 566-567
- Statello L, Guo CJ, Chen LL and Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22, 96-118 https://doi.org/10.1038/s41580-020-00315-9
- Uthaya Kumar DB and Williams A (2020) Long non-coding RNAs in immune regulation and their potential as therapeutic targets. Int Immunopharmacol 81, 106279
- Lin J, Jiang Z, Liu C et al (2020) Emerging roles of long non-coding RNAs in renal fibrosis. Life (Basel) 10, 131
- Xiao X, Yuan Q, Chen Y et al (2019) LncRNA ENST 00000453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis. J Cell Physiol 234, 9130-9143 https://doi.org/10.1002/jcp.27590
- Wang Z, Yang X, Gui S et al (2021) The roles and mechanisms of lncRNAs in liver fibrosis. Front Pharmacol 12, 779606
- Peng H, Wan LY, Liang JJ, Zhang YQ, Ai WB and Wu JF (2018) The roles of lncRNA in hepatic fibrosis. Cell Biosci 8, 63
- Israelsen M, Madsen BS, Torp N et al (2023) Rifaximin-alpha for liver fibrosis in patients with alcohol-related liver disease (GALA-RIF): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Gastroenterol Hepatol 8, 523-532 https://doi.org/10.1016/S2468-1253(23)00010-9
- Lv H, Jiang Y, Zhu G et al (2023) Liver fibrosis is closely related to metabolic factors in metabolic associated fatty liver disease with hepatitis B virus infection. Sci Rep 13, 1388
- Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwalder M and Tacke F (2022) Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 77, 1136-1160 https://doi.org/10.1016/j.jhep.2022.06.012
- Xiong YT, Wang JF, Niu XX et al (2023) Autoimmunity associates with severity of illness in elderly patients with drug-induced liver injury. Front Pharmacol 14, 1071709
- Omar H, Waked I, Elakel W et al (2023) Evolution of liver fibrosis after interferon-based anti-hepatitis C virus therapy failure in 3,049 chronic hepatitis C patients without cirrhosis. Arab J Gastroenterol 24, 65-72 https://doi.org/10.1016/j.ajg.2023.01.002
- Zhao M, Wang L, Wang M et al (2022) Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 7, 206
- Denicolo S, Nair V, Leierer J et al (2022) Assessment of fibrinogen-like 2 (FGL2) in Human chronic kidney disease through transcriptomics data analysis. Biomolecules 13, 89
- Juin SK, Pushpakumar S, Tyagi SC and Sen U (2022) Glucosidase inhibitor, nimbidiol ameliorates renal fibrosis and dysfunction in type-1 diabetes. Sci Rep 12, 21707
- Liu Y, Dong ZJ, Song JW et al (2022) MicroRNA-122-5p promotes renal fibrosis and injury in spontaneously hypertensive rats by targeting FOXO3. Exp Cell Res 411, 113017
- Lv K, Wang Y, Lou P et al (2022) Extracellular vesicles as advanced therapeutics for the resolution of organ fibrosis: current progress and future perspectives. Front Immunol 13, 1042983
- Shen F and Zhuang S (2022) Histone acetylation and modifiers in renal fibrosis. Front Pharmacol 13, 760308
- Mutsaers HA and Olinga P (2016) Editorial: organ fibrosis: triggers, pathways, and cellular plasticity. Front Med (Lausanne) 3, 55
- Yoshimura H, Matsuda Y, Yamamoto M, Kamiya S and Ishiwata T (2018) Expression and role of long non-coding RNA H19 in carcinogenesis. FBL 23, 614-625
- Song Y, Liu C, Liu X et al (2017) H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule. Hepatology 66, 1183-1196 https://doi.org/10.1002/hep.29209
- Zhang K, Han X, Zhang Z et al (2017) The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFbeta and Notch pathways. Nat Commun 8, 144
- Dong BS, Liu FQ, Yang WN et al (2023) Huangqi decoction, a compound Chinese herbal medicine, inhibits the proliferation and activation of hepatic stellate cells by regulating the long noncoding RNA-C18orf26-1/microRNA663a/transforming growth factor-beta axis. J Integr Med 21, 47-61 https://doi.org/10.1016/j.joim.2022.11.002
- Li Y, Liu P and Wei F (2022) Long non‑coding RNA MBI‑52 inhibits the development of liver fibrosis by regulating the microRNA‑466g/SMAD4 signaling pathway. Mol Med Rep 25, 33
- Zhang K, Han Y, Hu Z et al (2019) SCARNA10, a nuclear-retained long non-coding RNA, promotes liver fibrosis and serves as a potential biomarker. Theranostics 9, 3622-3638 https://doi.org/10.7150/thno.32935
- Zhao D, Zhang H, Long J and Li M (2020) LncRNA SNHG7 functions as an oncogene in cervical cancer by sponging miR-485-5p to modulate JUND expression. Onco Targets Ther 13, 1677-1689 https://doi.org/10.2147/OTT.S237802
- Shan Y, Ma J, Pan Y, Hu J, Liu B and Jia L (2018) LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis 9, 722
- Bai Z, Wu Y, Bai S et al (2020) Long non-coding RNA SNGH7 Is activated by SP1 and exerts oncogenic properties by interacting with EZH2 in ovarian cancer. J Cell Mol Med 24, 7479-7489 https://doi.org/10.1111/jcmm.15373
- Tan X, Chen WB, Lv DJ et al (2021) LncRNA SNHG1 and RNA binding protein hnRNPL form a complex and co-regulate CDH1 to boost the growth and metastasis of prostate cancer. Cell Death Dis 12, 138
- Yu F, Dong P, Mao Y, Zhao B, Huang Z and Zheng J (2019) Loss of lncRNA-SNHG7 promotes the suppression of hepatic stellate cell activation via miR-378a-3p and DVL2. Mol Ther Nucleic Acids 17, 235-244 https://doi.org/10.1016/j.omtn.2019.05.026
- Bhan A and Mandal SS (2015) LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer. Biochim Biophys Acta 1856, 151-164 https://doi.org/10.1016/j.bbcan.2015.07.001
- Yu F, Chen B, Dong P and Zheng J (2017) HOTAIR epigenetically modulates PTEN expression via MicroRNA29b: a novel mechanism in regulation of liver fibrosis. Mol Ther 25, 205-217 https://doi.org/10.1016/j.ymthe.2016.10.015
- Amodio N, Raimondi L, Juli G et al (2018) MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol 11, 63
- Miao H, Wu F, Li Y et al (2022) MALAT1 modulates alternative splicing by cooperating with the splicing factors PTBP1 and PSF. Science Advances 8, eabq7289
- Shi C, Ren S, Zhao X and Li Q (2022) lncRNA MALAT1 regulates the resistance of breast cancer cells to paclitaxel via the miR-497-5p/SHOC2 axis. Pharmacogenomics 23, 973-985 https://doi.org/10.2217/pgs-2022-0077
- Wang Y, Mou Q, Zhu Z, Zhao L and Zhu L (2021) MALAT1 promotes liver fibrosis by sponging miR‑181a and activating TLR4‑NF‑kappaB signaling. Int J Mol Med 48, 215
- Prinz F, Kapeller A, Pichler M and Klec C (2019) The implications of the long non-coding RNA NEAT1 in noncancerous diseases. Int J Mol Sci 20, 627
- Chakravarty D, Sboner A, Nair SS et al (2014) The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5, 5383
- Li C, Liu YF, Huang C, Chen YX, Xu CY and Chen Y (2020) Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I. Am J Physiol Renal Physiol 319, 93-105 https://doi.org/10.1152/ajprenal.00552.2019
- Shu B, Zhang RZ, Zhou YX, He C and Yang X (2022) METTL3-mediated macrophage exosomal NEAT1 contributes to hepatic fibrosis progression through Sp1/TGF-beta1/Smad signaling pathway. Cell Death Discov 8, 266
- Chen L, Yao X, Yao H, Ji Q, Ding G and Liu X (2020) Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells. FASEB J 34, 5178-5192 https://doi.org/10.1096/fj.201902307RRR
- Dong Z, Li S, Wang X et al (2019) lncRNA GAS5 restrains CCl4-induced hepatic fibrosis by targeting miR-23a through the PTEN/PI3K/Akt signaling pathway. Am J Physiol Gastrointest Liver Physiol 316, 539-550 https://doi.org/10.1152/ajpgi.00249.2018
- Zhang L, Zhao S and Zhu Y (2020) Long noncoding RNA growth arrest-specific transcript 5 alleviates renal fibrosis in diabetic nephropathy by downregulating matrix metalloproteinase 9 through recruitment of enhancer of zeste homolog 2. FASEB J 34, 2703-2714 https://doi.org/10.1096/fj.201901380RR
- Zhang YY, Tan RZ, Yu Y, Niu YY and Yu C (2021) LncRNA GAS5 protects against TGF-beta-induced renal fibrosis via the Smad3/miRNA-142-5p axis. Am J Physiol Renal Physiol 321, 517-526 https://doi.org/10.1152/ajprenal.00085.2021
- Yu F, Zheng J, Mao Y et al (2015) Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibro-genesis through a mechanism of competing endogenous RNA. J Biol Chem 290, 28286-28298 https://doi.org/10.1074/jbc.M115.683813
- Luo Y, Guo J, Xu P and Gui R (2020) Long non-coding RNA GAS5 maintains insulin secretion by regulating multiple miRNAs in INS-1 832/13 cells. Front Mol Biosci 7, 559267
- Qin R, Huang W, Huang Y et al (2022) lncRNA MEG3 modulates hepatic stellate cell activation by sponging miR‑145 to regulate PPARgamma. Mol Med Rep 25, 3
- Li X, Ma TK, Wen S et al (2020) LncRNA ARAP1-AS2 promotes high glucose-induced human proximal tubular cell injury via persistent transactivation of the EGFR by interacting with ARAP1. J Cell Mol Med 24, 12994-13009 https://doi.org/10.1111/jcmm.15897
- Shi S, Song L, Yu H et al (2020) Knockdown of LncRNAH19 ameliorates kidney fibrosis in diabetic mice by suppressing miR-29a-Mediated EndMT. Front Pharmacol 11, 586895
- Zhou H, Qiu ZZ, Yu ZH et al (2019) Paeonol reverses promoting effect of the HOTAIR/miR-124/Notch1 axis on renal interstitial fibrosis in a rat model. J Cell Physiol 234, 14351-14363 https://doi.org/10.1002/jcp.28137
- Hao J, Zhou Y, Yu W, Li H and He D (2022) Silencing of LncRNA KCNQ1OT1 confers an inhibitory effect on renal fibrosis through repressing miR-124-3p activity. Bioengineered 13, 10399-10411 https://doi.org/10.1080/21655979.2022.2056816
- Huang H, Zhang G and Ge Z (2021) lncRNA MALAT1 promotes renal fibrosis in diabetic nephropathy by targeting the miR-2355-3p/IL6ST axis. Front Pharmacol 12, 647650
- Wang P, Luo ML, Song E et al (2018) Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci Transl Med 10, eaat2039
- Zhu Y, Wang Z, Liang Z et al (2022) LncRNA4474 inhibits renal fibrosis by regulating hepatocyte nuclear factor-1beta through miR-615 modulation. Cell Cycle 21, 1233-1248 https://doi.org/10.1080/15384101.2022.2046982
- Guo F, Tang C, Huang B et al (2022) LncRNA H19 drives proliferation of cardiac fibroblasts and collagen production via suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-beta axis. Mol Cells 45, 122-133 https://doi.org/10.14348/molcells.2021.0066
- Lu Q, Guo Z, Xie W et al (2018) The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 axis. Inflammation 41, 896-903 https://doi.org/10.1007/s10753-018-0744-4
- Yang S, Liu F and Wang D (2022) Long noncoding RNA Kcnq1ot1 prompts lipopolysaccharide-induced acute lung injury by microRNA-7a-5p/Rtn3 axis. Eur J Med Res 27, 46
- Yan W, Wu Q, Yao W et al (2017) MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep 7, 11313
- Ge Z, Yin C, Li Y et al (2022) Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. J Transl Med 20, 7
- Liu Y, Lu FA, Wang L, Wang YF and Wu CF (2021) Long non‑coding RNA NEAT1 promotes pulmonary fibrosis by regulating the microRNA‑455‑3p/SMAD3 axis. Mol Med Rep 23, 218
- Tao H, Shi P, Zhao XD, Xuan HY and Ding XS (2020) MeCP2 inactivation of LncRNA GAS5 triggers cardiac fibroblasts activation in cardiac fibrosis. Cell Signal 74, 109705
- Wang Y, Chen D, Xie H et al (2023) LncRNA GAS5 suppresses TGF-beta1-induced transformation of pulmonary pericytes into myofibroblasts by recruiting KDM5B and promoting H3K4me2/3 demethylation of the PDGFR alpha/beta promoter. Mol Med 29, 32
- Ghafouri-Fard S, Abak A, Talebi SF et al (2021) Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 143, 112132
- Yiu WH, Lok SWY, Xue R et al (2023) The long noncoding RNA Meg3 mediates TLR4-induced inflammation in experimental obstructive nephropathy. Clin Sci (Lond) 137, 317-331 https://doi.org/10.1042/CS20220537
- Yu F, Geng W, Dong P, Huang Z and Zheng J (2018) LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis 9, 1014
- Yu F, Geng W, Dong P, Huang Z and Zheng J (2022) Correction: LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis 13, 133
- Yu F, Lu Z, Cai J et al (2015) MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis. Cell Cycle 14, 3885-3896 https://doi.org/10.1080/15384101.2015.1120917
- Shen J, Cao J, Chen M and Zhang Y (2023) Recent advances in the role of exosomes in liver fibrosis. J Gastroenterol Hepatol doi: 10.1111/jgh.16203
- Lou G, Yang Y, Liu F et al (2017) MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med 21, 2963-2973 https://doi.org/10.1111/jcmm.13208
- Rong X, Liu J, Yao X, Jiang T, Wang Y and Xie F (2019) Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/beta-catenin pathway. Stem Cell Res Ther 10, 98
- Nair N, Feng N, Blum LK et al (2017) VP4- and VP7-specific antibodies mediate heterotypic immunity to rotavirus in humans. Sci Transl Med 9, eaam5434
- Amodio N, Stamato MA, Juli G et al (2018) Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 32, 1948-1957 https://doi.org/10.1038/s41375-018-0067-3
- Chen MJ, Wang XG, Sun ZX and Liu XC (2019) Diagnostic value of LncRNA-MEG3 as a serum biomarker in patients with hepatitis B complicated with liver fibrosis. Eur Rev Med Pharmacol Sci 23, 4360-4367
- Xiao Y, Liu R, Li X et al (2019) Long Noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia. Hepatology 70, 1658-1673 https://doi.org/10.1002/hep.30698
- Zhu Y, Dai L, Yu X et al (2022) Circulating expression and clinical significance of LncRNA ANRIL in diabetic kidney disease. Mol Biol Rep 49, 10521-10529 https://doi.org/10.1007/s11033-022-07843-x
- Zhang L, Zhou Y, Zhou F et al (2020) Altered expression of long noncoding and messenger RNAs in diabetic nephropathy following treatment with rosiglitazone. Biomed Res Int 2020, 1360843
- Kong C, Lyu D, He C, Li R and Lu Q (2021) Dioscin elevates lncRNA MANTIS in therapeutic angiogenesis for heart diseases. Aging Cell 20, e13392