DOI QR코드

DOI QR Code

Long non-coding RNAs: key regulators of liver and kidney fibrogenesis

  • Su-hyang Han (Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women's University) ;
  • Je Yeong Ko (Molecular Medicine Lab, Department of Biological Sciences, Sookmyung Women's University) ;
  • Eun Seo Kang (Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women's University) ;
  • Jong Hoon Park (Molecular Medicine Lab, Department of Biological Sciences, Sookmyung Women's University) ;
  • Kyung Hyun Yoo (Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women's University)
  • Received : 2023.04.19
  • Accepted : 2023.06.13
  • Published : 2023.07.31

Abstract

Fibrosis is a pathological condition that is characterized by an abnormal buildup of extracellular matrix (ECM) components, such as collagen, in tissues. This condition affects various organs of the body, including the liver and kidney. Early diagnosis and treatment of fibrosis are crucial, as it is a progressive and irreversible process in both organs. While there are certain similarities in the fibrosis process between the liver and kidney, there are also significant differences that must be identified to determine molecular diagnostic markers and potential therapeutic targets. Long non-coding RNAs (lncRNAs), a class of RNA molecules that do not code for proteins, are increasingly recognized as playing significant roles in gene expression regulation. Emerging evidence suggests that specific lncRNAs are involved in fibrosis development and progression by modulating signaling pathways, such as the TGF-β/Smad pathway and the β-catenin pathway. Thus, identifying the precise lncRNAs involved in fibrosis could lead to novel therapeutic approaches for fibrotic diseases. In this review, we summarize lncRNAs related to fibrosis in the liver and kidney, and propose their potential as therapeutic targets based on their functions.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022M3A9B6082667).

References

  1. Chen Y, Pu Q, Ma Y et al (2021) Aging reprograms the hematopoietic-vascular niche to impede regeneration and promote fibrosis. Cell Metab 33, 395-410 e394
  2. Davidson MD, Burdick JA and Wells RG (2020) Engineered biomaterial platforms to study fibrosis. Adv Healthc Mater 9, e1901682
  3. Zhao X, Kwan JYY, Yip K, Liu PP and Liu FF (2020) Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov 19, 57-75 https://doi.org/10.1038/s41573-019-0040-5
  4. Lee J and Im S (2022) Function of gaseous hydrogen sulfide in liver fibrosis. BMB Rep 55, 481-487 https://doi.org/10.5483/BMBRep.2022.55.10.124
  5. Lee S and Yoo T (2022) Therapeutic application of extracellular vesicles for various kidney diseases: a brief review. BMB Rep 55, 3-10 https://doi.org/10.5483/BMBRep.2022.55.1.141
  6. Qin XJ, Zhang JX and Wang RL (2020) Exosomes as mediators and biomarkers in fibrosis. Biomark Med 14, 697-712 https://doi.org/10.2217/bmm-2019-0368
  7. Brigstock DR (2021) Extracellular vesicles in organ fibrosis: mechanisms, therapies, and diagnostics. Cells 10, 1596
  8. Barinotti A, Radin M, Cecchi I et al (2022) Serum Biomarkers of renal fibrosis: a systematic review. Int J Mol Sci 23, 14139
  9. Caligiuri A, Gentilini A, Pastore M, Gitto S and Marra F (2021) Cellular and molecular mechanisms underlying liver fibrosis regression. Cells 10, 2759
  10. Ulukan B, Sila Ozkaya Y and Zeybel M (2019) Advances in the epigenetics of fibroblast biology and fibrotic diseases. Curr Opin Pharmacol 49, 102-109 https://doi.org/10.1016/j.coph.2019.10.001
  11. Xue T, Qiu X, Liu H et al (2021) Epigenetic regulation in fibrosis progress. Pharmacol Res 173, 105910
  12. Yang Z, Zhang H, Yin M et al (2022) TGF-β1/Smad3 upregulates UCA1 to promote liver fibrosis through DKK1 and miR18a. J Mol Med (Berl) 100, 1465-1478 https://doi.org/10.1007/s00109-022-02248-6
  13. Xia W, He Y, Gan Y et al (2021) Long non-coding RNA: an emerging contributor and potential therapeutic target in renal fibrosis. Front Genet 12, 682904
  14. Chen T, Shi Z, Zhao Y et al (2022) LncRNA airn maintains LSEC differentiation to alleviate liver fibrosis via the KLF2- eNOS-sGC pathway. BMC Med 20, 335
  15. Ye Y, Wu W, Zheng J, Zhang L and Wang B (2022) Role of long non-coding RNA-adducin 3 antisense RNA1 in liver fibrosis of biliary atresia. Bioengineered 13, 6222-6230 https://doi.org/10.1080/21655979.2022.2041321
  16. Navarro-Corcuera A, Sehrawat TS, Jalan-Sakrikar N et al (2022) Long non-coding RNA ACTA2-AS1 promotes duc-tular reaction by interacting with the p300/ELK1 complex. J Hepatol 76, 921-933 https://doi.org/10.1016/j.jhep.2021.12.014
  17. Zhang Y, Zhang H, Hu L, Wei J and Ma C (2022) lncRNA TUG1 regulates hyperuricemia-induced renal fibrosis in a rat model. Acta Biochim Biophys Sin (Shanghai) 54, 1365-1375 https://doi.org/10.3724/abbs.2022128
  18. Luo Q, Xia X, Luo Q et al (2022) Long noncoding RNA MEG3-205/Let-7a/MyD88 axis promotes renal inflammation and fibrosis in diabetic nephropathy. Kidney Dis (Basel) 8, 231-245 https://doi.org/10.1159/000523847
  19. Cao L, Qu N, Wang X, Chen L and Liu M (2023) The function of long non-coding RNA in non-alcoholic fatty liver disease. Clin Res Hepatol Gastroenterol 47, 102095
  20. Xiang Z, Liqing Y, Qingqing Y, Qiang H and Hongbo C (2022) Retard or exacerbate: role of long non-coding RNA growth arrest-specific 5 in the fibrosis. Cytokine Growth Factor Rev 67, 89-104 https://doi.org/10.1016/j.cytogfr.2022.06.001
  21. Sen I, Uchida S and Garikipati VNS (2023) Long noncoding RNA lnc-CHAF1B-3 as a new player in fibrosis. Mol Ther Nucleic Acids 31, 566-567
  22. Statello L, Guo CJ, Chen LL and Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22, 96-118 https://doi.org/10.1038/s41580-020-00315-9
  23. Uthaya Kumar DB and Williams A (2020) Long non-coding RNAs in immune regulation and their potential as therapeutic targets. Int Immunopharmacol 81, 106279
  24. Lin J, Jiang Z, Liu C et al (2020) Emerging roles of long non-coding RNAs in renal fibrosis. Life (Basel) 10, 131
  25. Xiao X, Yuan Q, Chen Y et al (2019) LncRNA ENST 00000453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis. J Cell Physiol 234, 9130-9143 https://doi.org/10.1002/jcp.27590
  26. Wang Z, Yang X, Gui S et al (2021) The roles and mechanisms of lncRNAs in liver fibrosis. Front Pharmacol 12, 779606
  27. Peng H, Wan LY, Liang JJ, Zhang YQ, Ai WB and Wu JF (2018) The roles of lncRNA in hepatic fibrosis. Cell Biosci 8, 63
  28. Israelsen M, Madsen BS, Torp N et al (2023) Rifaximin-alpha for liver fibrosis in patients with alcohol-related liver disease (GALA-RIF): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Gastroenterol Hepatol 8, 523-532 https://doi.org/10.1016/S2468-1253(23)00010-9
  29. Lv H, Jiang Y, Zhu G et al (2023) Liver fibrosis is closely related to metabolic factors in metabolic associated fatty liver disease with hepatitis B virus infection. Sci Rep 13, 1388
  30. Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwalder M and Tacke F (2022) Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 77, 1136-1160 https://doi.org/10.1016/j.jhep.2022.06.012
  31. Xiong YT, Wang JF, Niu XX et al (2023) Autoimmunity associates with severity of illness in elderly patients with drug-induced liver injury. Front Pharmacol 14, 1071709
  32. Omar H, Waked I, Elakel W et al (2023) Evolution of liver fibrosis after interferon-based anti-hepatitis C virus therapy failure in 3,049 chronic hepatitis C patients without cirrhosis. Arab J Gastroenterol 24, 65-72 https://doi.org/10.1016/j.ajg.2023.01.002
  33. Zhao M, Wang L, Wang M et al (2022) Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 7, 206
  34. Denicolo S, Nair V, Leierer J et al (2022) Assessment of fibrinogen-like 2 (FGL2) in Human chronic kidney disease through transcriptomics data analysis. Biomolecules 13, 89
  35. Juin SK, Pushpakumar S, Tyagi SC and Sen U (2022) Glucosidase inhibitor, nimbidiol ameliorates renal fibrosis and dysfunction in type-1 diabetes. Sci Rep 12, 21707
  36. Liu Y, Dong ZJ, Song JW et al (2022) MicroRNA-122-5p promotes renal fibrosis and injury in spontaneously hypertensive rats by targeting FOXO3. Exp Cell Res 411, 113017
  37. Lv K, Wang Y, Lou P et al (2022) Extracellular vesicles as advanced therapeutics for the resolution of organ fibrosis: current progress and future perspectives. Front Immunol 13, 1042983
  38. Shen F and Zhuang S (2022) Histone acetylation and modifiers in renal fibrosis. Front Pharmacol 13, 760308
  39. Mutsaers HA and Olinga P (2016) Editorial: organ fibrosis: triggers, pathways, and cellular plasticity. Front Med (Lausanne) 3, 55
  40. Yoshimura H, Matsuda Y, Yamamoto M, Kamiya S and Ishiwata T (2018) Expression and role of long non-coding RNA H19 in carcinogenesis. FBL 23, 614-625
  41. Song Y, Liu C, Liu X et al (2017) H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule. Hepatology 66, 1183-1196 https://doi.org/10.1002/hep.29209
  42. Zhang K, Han X, Zhang Z et al (2017) The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFbeta and Notch pathways. Nat Commun 8, 144
  43. Dong BS, Liu FQ, Yang WN et al (2023) Huangqi decoction, a compound Chinese herbal medicine, inhibits the proliferation and activation of hepatic stellate cells by regulating the long noncoding RNA-C18orf26-1/microRNA663a/transforming growth factor-beta axis. J Integr Med 21, 47-61 https://doi.org/10.1016/j.joim.2022.11.002
  44. Li Y, Liu P and Wei F (2022) Long non‑coding RNA MBI‑52 inhibits the development of liver fibrosis by regulating the microRNA‑466g/SMAD4 signaling pathway. Mol Med Rep 25, 33
  45. Zhang K, Han Y, Hu Z et al (2019) SCARNA10, a nuclear-retained long non-coding RNA, promotes liver fibrosis and serves as a potential biomarker. Theranostics 9, 3622-3638 https://doi.org/10.7150/thno.32935
  46. Zhao D, Zhang H, Long J and Li M (2020) LncRNA SNHG7 functions as an oncogene in cervical cancer by sponging miR-485-5p to modulate JUND expression. Onco Targets Ther 13, 1677-1689 https://doi.org/10.2147/OTT.S237802
  47. Shan Y, Ma J, Pan Y, Hu J, Liu B and Jia L (2018) LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis 9, 722
  48. Bai Z, Wu Y, Bai S et al (2020) Long non-coding RNA SNGH7 Is activated by SP1 and exerts oncogenic properties by interacting with EZH2 in ovarian cancer. J Cell Mol Med 24, 7479-7489 https://doi.org/10.1111/jcmm.15373
  49. Tan X, Chen WB, Lv DJ et al (2021) LncRNA SNHG1 and RNA binding protein hnRNPL form a complex and co-regulate CDH1 to boost the growth and metastasis of prostate cancer. Cell Death Dis 12, 138
  50. Yu F, Dong P, Mao Y, Zhao B, Huang Z and Zheng J (2019) Loss of lncRNA-SNHG7 promotes the suppression of hepatic stellate cell activation via miR-378a-3p and DVL2. Mol Ther Nucleic Acids 17, 235-244 https://doi.org/10.1016/j.omtn.2019.05.026
  51. Bhan A and Mandal SS (2015) LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer. Biochim Biophys Acta 1856, 151-164 https://doi.org/10.1016/j.bbcan.2015.07.001
  52. Yu F, Chen B, Dong P and Zheng J (2017) HOTAIR epigenetically modulates PTEN expression via MicroRNA29b: a novel mechanism in regulation of liver fibrosis. Mol Ther 25, 205-217 https://doi.org/10.1016/j.ymthe.2016.10.015
  53. Amodio N, Raimondi L, Juli G et al (2018) MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol 11, 63
  54. Miao H, Wu F, Li Y et al (2022) MALAT1 modulates alternative splicing by cooperating with the splicing factors PTBP1 and PSF. Science Advances 8, eabq7289
  55. Shi C, Ren S, Zhao X and Li Q (2022) lncRNA MALAT1 regulates the resistance of breast cancer cells to paclitaxel via the miR-497-5p/SHOC2 axis. Pharmacogenomics 23, 973-985 https://doi.org/10.2217/pgs-2022-0077
  56. Wang Y, Mou Q, Zhu Z, Zhao L and Zhu L (2021) MALAT1 promotes liver fibrosis by sponging miR‑181a and activating TLR4‑NF‑kappaB signaling. Int J Mol Med 48, 215
  57. Prinz F, Kapeller A, Pichler M and Klec C (2019) The implications of the long non-coding RNA NEAT1 in noncancerous diseases. Int J Mol Sci 20, 627
  58. Chakravarty D, Sboner A, Nair SS et al (2014) The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5, 5383
  59. Li C, Liu YF, Huang C, Chen YX, Xu CY and Chen Y (2020) Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I. Am J Physiol Renal Physiol 319, 93-105 https://doi.org/10.1152/ajprenal.00552.2019
  60. Shu B, Zhang RZ, Zhou YX, He C and Yang X (2022) METTL3-mediated macrophage exosomal NEAT1 contributes to hepatic fibrosis progression through Sp1/TGF-beta1/Smad signaling pathway. Cell Death Discov 8, 266
  61. Chen L, Yao X, Yao H, Ji Q, Ding G and Liu X (2020) Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells. FASEB J 34, 5178-5192 https://doi.org/10.1096/fj.201902307RRR
  62. Dong Z, Li S, Wang X et al (2019) lncRNA GAS5 restrains CCl4-induced hepatic fibrosis by targeting miR-23a through the PTEN/PI3K/Akt signaling pathway. Am J Physiol Gastrointest Liver Physiol 316, 539-550 https://doi.org/10.1152/ajpgi.00249.2018
  63. Zhang L, Zhao S and Zhu Y (2020) Long noncoding RNA growth arrest-specific transcript 5 alleviates renal fibrosis in diabetic nephropathy by downregulating matrix metalloproteinase 9 through recruitment of enhancer of zeste homolog 2. FASEB J 34, 2703-2714 https://doi.org/10.1096/fj.201901380RR
  64. Zhang YY, Tan RZ, Yu Y, Niu YY and Yu C (2021) LncRNA GAS5 protects against TGF-beta-induced renal fibrosis via the Smad3/miRNA-142-5p axis. Am J Physiol Renal Physiol 321, 517-526 https://doi.org/10.1152/ajprenal.00085.2021
  65. Yu F, Zheng J, Mao Y et al (2015) Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibro-genesis through a mechanism of competing endogenous RNA. J Biol Chem 290, 28286-28298 https://doi.org/10.1074/jbc.M115.683813
  66. Luo Y, Guo J, Xu P and Gui R (2020) Long non-coding RNA GAS5 maintains insulin secretion by regulating multiple miRNAs in INS-1 832/13 cells. Front Mol Biosci 7, 559267
  67. Qin R, Huang W, Huang Y et al (2022) lncRNA MEG3 modulates hepatic stellate cell activation by sponging miR‑145 to regulate PPARgamma. Mol Med Rep 25, 3
  68. Li X, Ma TK, Wen S et al (2020) LncRNA ARAP1-AS2 promotes high glucose-induced human proximal tubular cell injury via persistent transactivation of the EGFR by interacting with ARAP1. J Cell Mol Med 24, 12994-13009 https://doi.org/10.1111/jcmm.15897
  69. Shi S, Song L, Yu H et al (2020) Knockdown of LncRNAH19 ameliorates kidney fibrosis in diabetic mice by suppressing miR-29a-Mediated EndMT. Front Pharmacol 11, 586895
  70. Zhou H, Qiu ZZ, Yu ZH et al (2019) Paeonol reverses promoting effect of the HOTAIR/miR-124/Notch1 axis on renal interstitial fibrosis in a rat model. J Cell Physiol 234, 14351-14363 https://doi.org/10.1002/jcp.28137
  71. Hao J, Zhou Y, Yu W, Li H and He D (2022) Silencing of LncRNA KCNQ1OT1 confers an inhibitory effect on renal fibrosis through repressing miR-124-3p activity. Bioengineered 13, 10399-10411 https://doi.org/10.1080/21655979.2022.2056816
  72. Huang H, Zhang G and Ge Z (2021) lncRNA MALAT1 promotes renal fibrosis in diabetic nephropathy by targeting the miR-2355-3p/IL6ST axis. Front Pharmacol 12, 647650
  73. Wang P, Luo ML, Song E et al (2018) Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci Transl Med 10, eaat2039
  74. Zhu Y, Wang Z, Liang Z et al (2022) LncRNA4474 inhibits renal fibrosis by regulating hepatocyte nuclear factor-1beta through miR-615 modulation. Cell Cycle 21, 1233-1248 https://doi.org/10.1080/15384101.2022.2046982
  75. Guo F, Tang C, Huang B et al (2022) LncRNA H19 drives proliferation of cardiac fibroblasts and collagen production via suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-beta axis. Mol Cells 45, 122-133 https://doi.org/10.14348/molcells.2021.0066
  76. Lu Q, Guo Z, Xie W et al (2018) The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 axis. Inflammation 41, 896-903 https://doi.org/10.1007/s10753-018-0744-4
  77. Yang S, Liu F and Wang D (2022) Long noncoding RNA Kcnq1ot1 prompts lipopolysaccharide-induced acute lung injury by microRNA-7a-5p/Rtn3 axis. Eur J Med Res 27, 46
  78. Yan W, Wu Q, Yao W et al (2017) MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep 7, 11313
  79. Ge Z, Yin C, Li Y et al (2022) Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. J Transl Med 20, 7
  80. Liu Y, Lu FA, Wang L, Wang YF and Wu CF (2021) Long non‑coding RNA NEAT1 promotes pulmonary fibrosis by regulating the microRNA‑455‑3p/SMAD3 axis. Mol Med Rep 23, 218
  81. Tao H, Shi P, Zhao XD, Xuan HY and Ding XS (2020) MeCP2 inactivation of LncRNA GAS5 triggers cardiac fibroblasts activation in cardiac fibrosis. Cell Signal 74, 109705
  82. Wang Y, Chen D, Xie H et al (2023) LncRNA GAS5 suppresses TGF-beta1-induced transformation of pulmonary pericytes into myofibroblasts by recruiting KDM5B and promoting H3K4me2/3 demethylation of the PDGFR alpha/beta promoter. Mol Med 29, 32
  83. Ghafouri-Fard S, Abak A, Talebi SF et al (2021) Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 143, 112132
  84. Yiu WH, Lok SWY, Xue R et al (2023) The long noncoding RNA Meg3 mediates TLR4-induced inflammation in experimental obstructive nephropathy. Clin Sci (Lond) 137, 317-331 https://doi.org/10.1042/CS20220537
  85. Yu F, Geng W, Dong P, Huang Z and Zheng J (2018) LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis 9, 1014
  86. Yu F, Geng W, Dong P, Huang Z and Zheng J (2022) Correction: LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis 13, 133
  87. Yu F, Lu Z, Cai J et al (2015) MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis. Cell Cycle 14, 3885-3896 https://doi.org/10.1080/15384101.2015.1120917
  88. Shen J, Cao J, Chen M and Zhang Y (2023) Recent advances in the role of exosomes in liver fibrosis. J Gastroenterol Hepatol doi: 10.1111/jgh.16203
  89. Lou G, Yang Y, Liu F et al (2017) MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med 21, 2963-2973 https://doi.org/10.1111/jcmm.13208
  90. Rong X, Liu J, Yao X, Jiang T, Wang Y and Xie F (2019) Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/beta-catenin pathway. Stem Cell Res Ther 10, 98
  91. Nair N, Feng N, Blum LK et al (2017) VP4- and VP7-specific antibodies mediate heterotypic immunity to rotavirus in humans. Sci Transl Med 9, eaam5434
  92. Amodio N, Stamato MA, Juli G et al (2018) Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 32, 1948-1957 https://doi.org/10.1038/s41375-018-0067-3
  93. Chen MJ, Wang XG, Sun ZX and Liu XC (2019) Diagnostic value of LncRNA-MEG3 as a serum biomarker in patients with hepatitis B complicated with liver fibrosis. Eur Rev Med Pharmacol Sci 23, 4360-4367
  94. Xiao Y, Liu R, Li X et al (2019) Long Noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia. Hepatology 70, 1658-1673 https://doi.org/10.1002/hep.30698
  95. Zhu Y, Dai L, Yu X et al (2022) Circulating expression and clinical significance of LncRNA ANRIL in diabetic kidney disease. Mol Biol Rep 49, 10521-10529 https://doi.org/10.1007/s11033-022-07843-x
  96. Zhang L, Zhou Y, Zhou F et al (2020) Altered expression of long noncoding and messenger RNAs in diabetic nephropathy following treatment with rosiglitazone. Biomed Res Int 2020, 1360843
  97. Kong C, Lyu D, He C, Li R and Lu Q (2021) Dioscin elevates lncRNA MANTIS in therapeutic angiogenesis for heart diseases. Aging Cell 20, e13392