• 제목/요약/키워드: Sintering Time

검색결과 672건 처리시간 0.026초

스파크 플라즈마 소결법으로 제조된 Sr-페라이트의 특성 (Properties of Sr-Ferrites Prepared by Spark Plasma Sintering Process)

  • 노재승;오명훈
    • 한국자기학회지
    • /
    • 제13권1호
    • /
    • pp.29-35
    • /
    • 2003
  • 스파크 플라즈마 소결(SPS)을 이용하여 이방성 Sr페라이트 자석을 제조하였다. SPS 장치를 이용하여 소결과 동시에 페라이트 분말을 배향시킬 수 있었으며, 낮은 온도 및 짧은 작업시간으로 치밀한 이방성 페라이트 자석을 제조할 수 있었다. 페라이트 입자의 이방성은 소결체의 바깥쪽부분에서 더 크게 나타났으며, 페라이트 입자의 배향은 SPS 전류와 밀접한 관계가 있는 것으로 판단되었다. 106$0^{\circ}C$에서 8분간 소결시킨 소결체의 밀도는 5.033 g/$cm^3$이었고, 소결체의 radial plan게서 잔류 자속 밀도는 3.15 kG, 보자력은 2.67 kOe이 얻어졌다.

적외선 램프를 이용하여 소결한 구리 나노잉크의 전기적 특성 평가에 관한 연구 (Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process)

  • 한현숙;김창규;양승진;김윤현
    • 한국재료학회지
    • /
    • 제26권4호
    • /
    • pp.216-221
    • /
    • 2016
  • A sintering process for copper based films using a rapid thermal process with infrared lamps is proposed to improve the electrical properties. Compared with films produced by conventional thermal sintering, the microstructure of the copper based films contained fewer internal and interfacial pores and larger grains after the rapid thermal process. This high-density microstructure is due to the high heating rate, which causes the abrupt decomposition of the organic shell at higher temperatures than is the case for the low heating rate; the high heating rate also induces densification of the copper based films. In order to confirm the effect of the rapid thermal process on copper nanoink, copper based films were prepared under varying of conditions such as the sintering temperature, time, and heating rate. As a result, the resistivity of the copper based films showed no significant changes at high temperature ($300^{\circ}C$) according to the sintering conditions. On the other hand, at low temperatures, the resistivity of the copper based films depended on the heating rate of the rapid thermal process.

방전 플라즈마 소결에 의한 Ge2Sb2Te5 스퍼터링 타겟 제조 및 특성 (Synthesis and Properties of a Ge2Sb2Te5 Sputtering for Use as a Target by Spark Plasma Sintering)

  • 방창욱;김기범;이진규
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.137-141
    • /
    • 2014
  • In this study, we report the sintering behavior and properties of a $Ge_2Sb_2Te_5$ alloy powders for use as a sputtering target by spark plasma sintering. The effect of various sintering parameters, such as pressure, temperature and time, on the density and hardness of the target has been investigated in detail. Structural characterization was performed by scanning electron microscopy and X-ray diffraction. Hardness and thermal properties were measured by differential scanning calorimetry and micro-vickers hardness tester. The density and hardness of the sintered $Ge_2Sb_2Te_5$ materials were 5.8976~6.3687 $g/cm^3$ and 32~75 Hv, respectively.

지르코니아 세라믹 소결조건이 치과보철물의 적합도에 미치는 영향 (Effect of zirconia ceramic sintering condition on the precision of fit in dental restorations)

  • 김재홍;김기백
    • 대한치과기공학회지
    • /
    • 제42권2호
    • /
    • pp.121-128
    • /
    • 2020
  • Purpose: This study aimed to investigate the effects of the sintering conditions of zirconia core on the adaptability. Methods: Ten specimens of each of commercial brand of zirconia(Razor 1100, U&C international, Seoul, Korea) were made and sintered under three different conditions. Specimens were divided into three subgroup(n=10) and sintered with various total time(1hr, 3hr, 9hr) at the maximum temperature(1500℃). The digitized data was superimposed with 3D inspection software to quantitatively obtain the adaptation of a zirconia core, and visual differences were confirmed with a color map. The root mean square(RMS) values of group were statistically analyzed with one-way ANOVA(α=0.05). Results: The overall adaptation of the zirconia cores were as follows; ss-1hr: 36.18±5.2㎛, ss-3hr: 39.55±3.9㎛, cs-9hr: 46.62±4.3㎛. They were statistically significant differences between groups for adaptation(p<0.05). Conclusion: Based on the results of this study, it could be considered that sintering condition of 1500℃ and 1~3 hour is recommended for the better marginal and internal fit. Speed sintering can be widely utilized to fabricate zirconia prothesis as the properties of those almost are to dentistry uses.

단시간과 장시간의 소결방법에 따른 지르코니아의 굴곡 강도와 미세구조의 변화 (The effect of short and long duration sintering method on microstructure and flexural strength of zirconia)

  • 이하빈;이태희;김지환
    • 대한치과기공학회지
    • /
    • 제42권2호
    • /
    • pp.73-79
    • /
    • 2020
  • Purpose: The aim of this study was to investigate the influence of short and long duration sintering on microstructure and flexural strength of zirconia. Methods: To conduct three-point bending test, Zirconia specimens are milled according to ISO 6872 guidelines(N=18, n=9 per group). Two specimens group(n=8) is sintered for 10 hours(Standard schedule) and 3 hours(Speed schedule) at the peak temperature of 1550℃ with silicon carbide sintering furnace. Flexural strength of specimens are measured by instron. After coating each specimen(n=1), microstructure of specimens is observed using Scanning Electron Microscope(SEM). T-test was utilized to statistically assess the data. Results: The mean and standard deviation value of the flexural strength for standard schedule group are 578.15±57.48Mpa, that of speed schedule are 465.9±62.34Mpa. T-test showed significant differences in flexural strength between two zirconia specimen group which applied standard schedule and speed schedule respectively(p<0.05). Conclusion: The result of this study showed that the increase in sintering time led to increased grain size, and also to a positive effect on the flexural strength.

TTIP를 이용한 저온소성용 TiO2 페이스트 최적화 (Optimized for Low-temperature Sintering of TiO2 Paste with TTIP)

  • 정유라;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제26권8호
    • /
    • pp.608-613
    • /
    • 2013
  • In this paper, the low-temperature sintering of $TiO_2$ is approached to solve the problem of high temperature sintering which decreases the interconnection between particles or between substrate and particle. $TiO_2$ paste is prepared with Titanium (IV) isopropoxide as the precursor material and calcinate at different conditions (low temperature). In the results, since the changing of temperature and time of sintering, crystalline phase do not change and the intensities of anatase, rutile phase are higher. At $110^{\circ}C$, 7 h sintering condition, crystalline size of anatase and rutile phase are the smallest which are 13.07 and 17.47 nm, respectively. In addition, the highest zeta potential is about 32.77 mV and the repulsive force increases thus leading to the best of the dispersion characteristics between $TiO_2$ particles. Futhermore, DSSCs at that condition exhibits the highest efficiency with the values of $V_{oc}$, $J_{sc}$, FF and ${\eta}$ are 0.69 V, $8.60mA\;cm^{-2}$, 67.93% and 4.06%, respectively.

니켈 실리사이드 화합물의 소결특성 (Sintering Characteristics of Nickel Silicide Alloy)

  • 변창섭;이상호
    • 한국재료학회지
    • /
    • 제16권6호
    • /
    • pp.341-345
    • /
    • 2006
  • [ $Ni_2Si$ ] mixed powders were mechanically alloyed by a ball mill and then processed by hot isostatic pressing (HIP) and spark plasma sintering (SPS). In the powder that was mechanically alloyed for 15minutes(MA 15 min), only Ni and Si were observed but in the powder that was mechanically alloyed for 30minutes(MA 30 min), $Ni_2Si$, Ni and Si were mixed together. Some of the MA 15 min powder and MA 30 min powder were processed by HIP under pressure of 150MPa at the temperature of $1000^{\circ}C$ for two hours and some of them were processed by SPS under pressure of 60 MPa at the temperature of $1000^{\circ}C$ for 60 seconds. Both methods completely compounded the powders to $Ni_2Si$. The maximum density of sintered lumps by HIP method was 99.5% and the maximum density of the sintered lump by SPS method was 99.3%. with the hardness of HRc 66 with the hardness of HRc 63. Therefore, the SPS method that can sinter in short time at low cost is considered to be more economical that the HIP method that requires complicated sintering conditions and high cost and the sintering can produce target materials in desired sizes and shapes to be used for thin film.

3원계 U-Ce-O의 소결 Kinetics 연구

  • 김형수;박춘호;배기광;정상태;최창범
    • 한국재료학회지
    • /
    • 제3권3호
    • /
    • pp.276-281
    • /
    • 1993
  • 3원계 U-Ce-O산화물의 소결거동을 연구하기 위하여 $UO_2$$CeO_2$분말을 ball-mill 방법으로 혼합한 (U, Ce)$O_2$의 영향이고, 나중에 나타나는 극대점은 $CeO_2$의 영향 때문이다. 또한 $Ceo_{2}$함량이 증가할수록 소결이 지연됨을 알수 있었다. 동일한 10wt. % $CeO_2$함량에서, 4시간동안 ball-milling을 하였을때가 소결속도는 가장 빨랐다.

  • PDF

고에너지밀링과 스파크플라즈마소결을 이용한 Ti-Nb-Mo-CPP 생체복합재료의 제조 및 특성 (Fabrication and Characteristics of Ti-Nb-Mo-CPP Composite Fabricated by High Energy Mechanical Milling and Spark Plasma Sintering)

  • 박상훈;우기도;김지영;김상미
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.469-475
    • /
    • 2012
  • A high-energy mechanical milling (HEMM) process was introduced to improve sinter-ability, and rapid sintering of spark plasma sintering (SPS) under pressure was used to make ultra fine grain (UFG) of Ti-Nb-Mo-CPP composites, which have bio-attractive elements, for increasing mechanical properties. Ti-Nb-Mo-CPP composites were successfully fabricated by SPS at $1000^{\circ}C$ within 5 minutes under 70 MPa using HEMMed powders. The Vickers hardness of the composites increased with increased milling time and addition of CPP contents. Biocompatibility and corrosion resistance of the Ti-Nb-Mo alloys were improved by addition of CPP, and the Ti-35%Nb-10%Mo-10%CPP alloy had better biocompatibility and corrosion resistance than the Ti-6Al-4V ELI alloy.

마이크로파 소결법을 이용한 LTCC 기판 Post 전극 형성에 관한 연구 (A Study of Post Electrode Formation by Microwave Sintering in LTCC Substrate)

  • 김용석;이택정;유원희;장병규;박성열;오용수
    • 마이크로전자및패키징학회지
    • /
    • 제14권4호
    • /
    • pp.43-48
    • /
    • 2007
  • LTCC 기판제작에 있어서 Post 전극형성은 실제 IC 및 수동부품을 탑재하는 Pad 형성 부분으로 전극 표면의 특성에 큰 영향을 미치게 된다. 본 연구에서는 일반적인 전기로를 이용한 post 전극 소성시 발생되는 문제점들 개선하여 마이크로파 소결을 통한 전극 미세 구조의 치밀화 및 이에 따른 신뢰성 기초 평가를 진행하였다. 일반적인 전기로와 마이크로파 소결 조건에 따른 전극과 LTCC 세라믹 상태를 평가하였다. 또한 과소성 및 탈바인더 공정시 Out gas 불충분에 의한 전극 부풀림 현상을 개선할 수 있는 효과를 얻을 수 있었으며 실제 solder ball 형성후 실장형 전극의 고착강도를 측정한 결과 기존 전기로에 비해서 30% 고착강도가 증가 하였다. 또한 소결시간을 기존 전기로 10시간에 비해 30분 정도에서 소결 공정이 이루어지므로 95%정도 시간을 단축시킬 수 있음을 확인하였다. 이는 소성로 설계를 통한 양산성, 효율성에 크게 증대되리라 예상된다.

  • PDF