DOI QR코드

DOI QR Code

Optimized for Low-temperature Sintering of TiO2 Paste with TTIP

TTIP를 이용한 저온소성용 TiO2 페이스트 최적화

  • Jung, You-Ra (Department of Electrical Engineering, Chonnam National University) ;
  • Jin, En Mei (Department of Electrical Engineering, Chonnam National University) ;
  • Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • Received : 2013.06.04
  • Accepted : 2013.07.23
  • Published : 2013.08.01

Abstract

In this paper, the low-temperature sintering of $TiO_2$ is approached to solve the problem of high temperature sintering which decreases the interconnection between particles or between substrate and particle. $TiO_2$ paste is prepared with Titanium (IV) isopropoxide as the precursor material and calcinate at different conditions (low temperature). In the results, since the changing of temperature and time of sintering, crystalline phase do not change and the intensities of anatase, rutile phase are higher. At $110^{\circ}C$, 7 h sintering condition, crystalline size of anatase and rutile phase are the smallest which are 13.07 and 17.47 nm, respectively. In addition, the highest zeta potential is about 32.77 mV and the repulsive force increases thus leading to the best of the dispersion characteristics between $TiO_2$ particles. Futhermore, DSSCs at that condition exhibits the highest efficiency with the values of $V_{oc}$, $J_{sc}$, FF and ${\eta}$ are 0.69 V, $8.60mA\;cm^{-2}$, 67.93% and 4.06%, respectively.

Keywords

References

  1. J. J. Yun, T. Y. Kim, S. Y. Cho, E. M. Jin, H. B. Gu, and K. H. Park, J. Chemical Engineering of Japan, 41, 639 (2008). https://doi.org/10.1252/jcej.07WE143
  2. K. H. Park, E. M. Jin, H. B. Gu, S. E. Shim, and C. K. Hong, Mater. Lett., 63, 2208 (2009). https://doi.org/10.1016/j.matlet.2009.07.034
  3. M. Ren, H. Yin, A. Wang, C. Ge, C. Liu, L. Yu, T. Jiang, Y. Liu, and Y. Hang, Appl. Surf. Sci., 254, 7314 (2008). https://doi.org/10.1016/j.apsusc.2008.05.325
  4. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, Sol. Energ. Mat. Sol. C., 90, 1176 (2006). https://doi.org/10.1016/j.solmat.2005.07.002
  5. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  6. Y. R. Jung, E. M. Jin, and H. B. Gu, J. KIEEME, 26, 380 (2013).
  7. R. H. Ottewill, J. Colloid Interface Sci., 58, 357 (1977). https://doi.org/10.1016/0021-9797(77)90148-5
  8. Wikipedia, Zeta Potential, http://en.wikipedia.org/wiki/ Zeta_potential (2013)
  9. P. Sherman, Industrial Rheology (Academic Press, London, 1970) p. 97.