• 제목/요약/키워드: Singularity Problem

검색결과 164건 처리시간 0.021초

탄성 선형 경화 재료로 구성된 복합 구조물의 자유 경계면에서 나타나는 응력특이도 (The Free Edge Stress Singularity At An Interface of Bilinear Material Structure)

  • 정철섭
    • 전산구조공학
    • /
    • 제10권3호
    • /
    • pp.185-193
    • /
    • 1997
  • 탄성 선형 경화 재료로 구성된 복합 구조물의 자유 경계면에서 나타나는 응력 특이도를 평면 변형률 상태에서 계산하였다. 자유 표면력 경계조건과 계면 연속조건을 만족해야하는 지배 탄성 방정식은 2점 경계치문제로 정의되며, 일반 고유치 문제의 해인 고유치가 응력 특이도가 될 것이다. 자유경계면 근처에서 응력 성분을 r/sup s-1/에 비례한다고 가정하여 특정한 s(고유치)를 구하는 고유치 문제를 뉴톤향상법과 사격법을 사용하여 수치적으로 해를 구하였다.

  • PDF

Multiple-loading condition을 고려한 구조체의 위상학적 최적화 (Topological Structural Optimization under Multiple-Loading Conditions)

  • 박재형;홍순조;이리형
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.179-186
    • /
    • 1996
  • 본 연구에서는 구조체의 위상학적 최적화를 위한 비선형 formulation(NLP)가 개발, 검토되었다. 이 NLP는 multiple-loading하에서 임의의 오브젝티브 함수, 응력, 변위 제약조건들을 쉽게 다룰 수가 있다. 또한 이 NLP는 해석과 최적화 디자인을 동시에 실시함으로써 요소 사이즈가 영으로 접근함에 따른 강성 매트릭스의 singularity를 피할 수 있다. 즉, 평형 방정식을 등제약조건으로 치환함으로써 강성 매트릭스 그 자체나 그의 역매트릭스를 구할 필요도 없어진다. 이 NLP는 multiple-loading conditon하에서 테스트되었으며, 이를 통해 이 NLP가 다양한 제약조건하에서 강력하게 작용함이 입증되었다.

  • PDF

정규 크리깅보간법을 이용한 응력특이문제의 p-적응적 유한요소해석 (p-Adaptive Finite Element Analysis of Stress Singularity Problems by Ordinary Kriging Interpolation)

  • 우광성;박미영;박진환;한상현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.849-856
    • /
    • 2006
  • This paper is to examine the applicability of ordinary Kriging interpolation(OK) to the p-adaptivity of the finite element analysis that is based on variogram. In the p-refinement, the analytical domain has to be refined automatically to obtain an acceptable level of accuracy by increasing the p-level non-uniformly or selectively. In case of non-uniform p-distribution, the continuity between elements with different polynomial orders is achieved by assigning zero higher-order derivatives associated with the edge in common with the lower-order derivatives. It is demonstrated that the validity of the proposed approach by analyzing results for stress singularity problem.

  • PDF

해석해를 이용한 유한 요소 해석법 (Finite Element Analysis Using an Analytical Solution)

  • 허영우;임장근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.458-463
    • /
    • 2000
  • The mechanical structures generally have discontinuous parts such as the cracks, notches and holes owing to various reasons. In this paper, in order to analyze effectively these singularity problems using the finite element method, a mixed analysis method which an analytical solution and finite element solutions are simultaneously used is newly proposed. As the analytical solution is used in the singularity region and the finite element solutions are used in the remaining regions except this singular zone, this analysis method reasonably provides for the numerical solution of a singularity problem. Through various numerical examples, it is shown that the proposed analysis method is very convenient and gives comparatively accurate solution.

  • PDF

국소적 조화함수를 사용한 원통좌표계에서의 유동 해석 (Method of Numerical Simulation by Using the Local Harmonic Functions in the Cylindrical Coordinates)

  • 서용권
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.300-305
    • /
    • 2007
  • Many practical flow problems are defined with the circular boundary. Fluid flows within a circular boundary are however susceptible to a singularity problem when the cylindrical coordinates are employed. To remove this singularity a method has been developed in this study which uses the local harmonic functions in discretization of derivatives as well as interpolation. This paper describes the basic reason for introducing the harmonic functions and the overall numerical methods. The numerical methods are evaluated in terms of the accuracy and the stability. The Lamb-dipole flow is selected as a test flow. We will see that the harmonic-function method indeed gives more accurate solutions than the conventional methods in which the polynomial functions are utilized.

로봇 메니퓰레이터의 제어를 위한 특이점 회피 알고리즘의 비교 연구 (Singularity Avoidance Algorithms for Controlling Robot Manipulator: A Comparative Study)

  • 김상현;박재홍
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.42-54
    • /
    • 2017
  • Using an inverse of the geometric Jacobian matrix is one of the most popular ways to control robot manipulators, because the Jacobian matrix contains the relationship between joint space velocities and operational space velocities. However, the control algorithm based on Jacobian matrix has algorithmic singularities: The robot manipulator becomes unstable when the Jacobian matrix loses rank. To solve this problem, various methods such as damped and filtered inverse have been proposed, but comparative studies to evaluate the performance of these algorithms are insufficient. Thus, this paper deals with a comparative analysis of six representative singularity avoidance algorithms: Damped Pseudo Inverse, Error Damped Pseudo Inverse, Scaled Jacobian Transpose, Selectively Damped Inverse, Filtered Inverse, and Task Transition Method. Especially, these algorithms are verified through computer simulations with a virtual model of a humanoid robot, THORMANG, in order to evaluate tracking error, computational time, and multiple task performance. With the experimental results, this paper contains a deep discussion about the effectiveness and limitations of each algorithm.

Attitude Control of Agile Spacecraft Using Momentum Exchange Devices

  • Lee, Hyun-Jae;Cho, Shin-Je;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.14-25
    • /
    • 2006
  • This paper is focused on designing an implementable control law to perform spacecraft various missions using momentum exchange devices such as reaction wheels(RWs) and control moment gyros(CMGs). A compact equation of motion of a spacecraft installed with various momentum exchange devices is derived in this paper. A hybrid control law is proposed for precision attitude control of agile spacecraft. The control law proposed in this paper allocates control torque to the CMGs and the RWs adequately to satisfy the precision attitude control and large angle maneuver simultaneously. The saturation problem of reaction wheels and the singularity problem of control moment gyros are considered. The problems are successfully resolved by using the proposed hybrid closed loop control law. Finally, the proposed hybrid control law is demonstrated by numerical simulations.

7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘 (Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction)

  • 김영렬;송재복
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

수치적으로 안정한 부분공간 반복법 (Numerically Stable Subspace Iteration Method)

  • 정형조;김만철;박선규;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.84-91
    • /
    • 1998
  • A numerically stable technique to remove tile limitation in choosing a shift in the subspace iteration method with shift is presented. A major difficulty of the subspace iteration method with shift is that because of singularity problem, a shift close to an eigenvalue can not be used, resulting in slower convergence. This study selves the above singularity problem using side conditions without sacrifice of convergence. The method is always nonsingular even if a shiht is an eigenvalue itself. This is one of tile significant characteristics of the proposed method. The nonsingularity is proved analytically. The convergence of the proposed method is at least equal to that of the subspace iteration method with shift, and the operation counts of above two methods are almost the same when a large number of eigenpairs are required. To show the effectiveness of the proposed method, two numerical examples are considered

  • PDF

The Use of Rankine Source to Evaluate Velocities around a Ship Hull

  • D.K.,Lee
    • 대한조선학회지
    • /
    • 제18권4호
    • /
    • pp.1-11
    • /
    • 1981
  • A flow problem around a ship hull with the nonlinear free surface boundary condition has been considered within the potential flow assumption. The Green's function based on the hull boundary condition is constructed numerically and used to satisfy the free surface boundary condition. This singularity to be distributed ideally on the undulating free surface is put actually, for practical reasons, on the flat water surface with the assumption of linear variation of velocities between the two positions. The surfaces of singularity distribution are approximated by Hess and Smith type quadrilaterals. The radiation condition is only crudely satisfied and this produced one of the major difficulties arising in the present way of attacking the problem.

  • PDF