• Title/Summary/Keyword: Singular values

Search Result 156, Processing Time 0.024 seconds

A study on the Hankel approximation of input delay systems (입력 시간지연 시스템의 한켈 근사화에 관한 연구)

  • Hwang, Lee-Cheol;Ha, Hui-Gwon;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.308-314
    • /
    • 1998
  • This paper studies the problem of computing the Hankel singular values and vectors in the input delay systems. It is shown that the Hankel singular values are solutions to a transcendental equation and the Hankel singular vectors are obtained from the kernel of the matrix. The computation is carried out in state space framework. Finally, Hankel approximation of a simple example shows the usefulness of this study.

  • PDF

A numerical analysis of driven cavity flow using singular finite element method (모서리특이성이 존재하는 유체유동의 특이유한요소를 이용한 수치해석적 연구)

  • ;;Lee, Jin Hee
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2971-2980
    • /
    • 1995
  • A numerical study of fluid flow in driven cavity was carried out using singular finite element method. The driven cavity problem is known to have infinite velocity gradients as well as dual velocity conditions at the singular points. To overcome such difficulties, a finite element method with singular shape functions was used and a special technique was employed to allow multiple values of velocities at the singular points. Application of singular elements in the driven cavity problem has a significant influence on the stability of solution. It was found the singular elements gave a stable solution, especially, for the pressure distribution of the entire flow field by keeping up a large pressure at the singular points. In the existing solutions of driven cavity problem, most efforts were focused on the study of streamlines and vorticities, and pressure were seldom mentioned. In this study, however, more attention was given to the pressure distribution. Computations showed that pressure decreased very rapidly as the distance from the singular point increased. Also, the pressure distribution along the vertical walls showed a smoother transition with singular elements compared to those of conventional method. At the singular point toward the flow direction showed more pressure increase compared with the other side as Reynolds number increased.

Digital Watermarking Scheme based on SVD and Triplet (SVD 및 트리플릿 기반의 디지털 워터마킹 기법)

  • Park, Byung-Su;Chu, Hyung-Suk;An, Chong-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1041-1046
    • /
    • 2009
  • In this paper, we proposed a robust watermark scheme for image based on SVD(Singular Value Transform) and Triplet. First, the original image is decomposed by using 3-level DWT, and then used the singular values changed for embedding and extracting of the watermark sequence in LL3 band. Since the matrix of singular values is not easily altered with various signal processing noises, the embedded watermark sequence has the ability to withstand various signal processing noise attacks. Nevertheless, this method does not guarantee geometric transformation(such as rotation, cropping, etc.) because the geometric transformation changes the matrix size. In this case, the watermark sequence cannot be extracted. To compensate for the above weaknesses, a method which uses the triplet for embedding a barcode image watermark in the middle of frequency band is proposed. In order to generate the barcode image watermark, the pattern of the watermark sequence embedded in a LL3 band is used. According to this method, the watermark information can be extracted from attacked images.

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.

Rational approximation of multiple input delay systems (복수입력 시간지연 시스템의 유리근사화)

  • HWANG, I Cheol;PARK, Kyoung Taik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.194-204
    • /
    • 1997
  • In this paper, we consider the rational approximation of multiple input delay systems. The method of computing Hankel singular values and vectors is firstly introduced, where explicitly shows the structure of the corresponding Hankel singular vectors. Secondly, rational approximants are obtained from output nor- mal relizations, which are constructed by Hankel singular values and vectors. As a result, it is shown that rational approximants by output normal realization preserve intrinsic properties of time delay systems than Pad'e approximants.

  • PDF

Defect Inspection of the Polarizer Film Using Singular Vector Decomposition (특이값 분해를 이용한 편광필름 결함 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.997-1003
    • /
    • 2007
  • In this paper, we propose a global approach for automatic inspection of defects in the polarizer film image. The proposed method does not rely on local feature of the defect. It is based on a global image reconstruction scheme using the singular value decomposition(SVD). SVD is used to decompose the image and then obtain a diagonal matrix of the singular values. Among the singular values, the first singular value is used to reconstruct a image. In reconstructed image, the normal pixels in background region have a different characteristics from the pixels in defect region. It is obtained the ratio of pixels in the reconstructed image to ones in the original image and then the defects are detected based on the the statistical process of the ratio. The experiment results show that the proposed method is efficient for defect inspection of polarizer lam image.

A NUMERICAL METHOD FOR CAUCHY PROBLEM USING SINGULAR VALUE DECOMPOSITION

  • Lee, June-Yub;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.487-508
    • /
    • 2001
  • We consider the Cauchy problem for Laplacian. Using the single layer representation, we obtain an equivalent system of boundary integral equations. We show the singular values of the ill-posed Cauchy operator decay exponentially, which means that a small error is exponentially amplified in the solution of the Cauchy problem. We show the decaying rate is dependent on the geometry of he domain, which provides the information on the choice of numerically meaningful modes. We suggest a pseudo-inverse regularization method based on singular value decomposition and present various numerical simulations.

  • PDF

Transmit Antenna Selection for Dual Polarized Channel Using Singular Value Decision

  • Lee Sang-yub;Mun Cheol;Yook Jong-gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.788-794
    • /
    • 2005
  • In this paper, we focus on the potential of dual polarized antennas in mobile system. thus, this paper designs exact dual polarized channel with Spatial Channel Model (SCM) and investigates the performance for certain environment. Using proposed the channel model; we know estimates of the channel capacity as a function of cross polarization discrimination (XPD) and spatial fading correlation. It is important that the MIMO channel matrix consists of Kronecker product dividable spatial and polarized channel. Through the channel characteristics, we propose an algorithm for the adaptation of transmit antenna configuration to time varying propagation environments. The optimal active transmit antenna subset is determined with equal power allocated to the active transmit antennas, assuming no feedback information on types of the selected antennas. We first consider a heuristic decision strategy in which the optimal active transmit antenna subset and its system capacity are determined such that the transmission data rate is maximized among all possible types. This paper then proposes singular values decision procedure consisting of Kronecker product with spatial and polarize channel. This method of singular value decision, which the first channel environments is determined using singular values of spatial channel part which is made of environment parameters and distance between antennas. level of correlation. Then we will select antenna which have various polarization type. After spatial channel structure is decided, we contact polarization types which have considerable cases It is note that the proposed algorithms and analysis of dual polarized channel using SCM (Spatial Channel Model) optimize channel capacity and reduce the number of transmit antenna selection compare to heuristic method which has considerable 100 cases.

Formulation of a Singular Finite Element and Its Application (특이 유한요소의 구성과 응용)

  • Kim, Myung-Sik;Lim, Jang-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1018-1025
    • /
    • 1999
  • For the effective analysis of two dimensional plane problems with geometrical discontinuities, singular finite element has been proposed. The element matrix equation was formulated on the basis of hybrid variational principle and Trefftz function sets derived consistently from the complex theory of plane elasticity by introducing a conformal mapping function. In order to suggest the accuracy characteristics of the proposed singular finite element, typical plane problems were analyzed and these results were compared with exact solutions. The singular finite element gives the comparatively exact values of stress concentration factors or stress intensity factors and can be effectively used for the analysis of mechanical structures containing various geometrical discontinuities.

Procedure for improving dynamic operability of chemical processes

  • Kwon, Youngwoon;Chang, Tae-Suk;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.332-335
    • /
    • 1995
  • A simple and effective method for improving Euclidean norm condition number for chemical processing system is presented. The singular value sensitivities of Freudenberg et al. (1982) is used to estimate the behavior of singular values of process transfer function matrix when design parameter is changed, then the condition number can be calculated straightforwardly. The method requires explicit dependencies of each transfer function matrix elements on design parameters. These dependencies can be obtained either by symbolic differentiation in the form of explicit function of design parameters, or by numerical perturbation studies for units with large and complicated models. Gerschgorin-type lower bound for minimum singular value is introduced to detect the large divergencies near singular point due to linearity of sensitivities. The case studies are performed to show the efficiency of the proposed method.

  • PDF