• Title/Summary/Keyword: Singular systems

Search Result 367, Processing Time 0.024 seconds

Tensor-based tag emotion aware recommendation with probabilistic ranking

  • Lim, Hyewon;Kim, Hyoung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5826-5841
    • /
    • 2019
  • In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics derived by a high-order singular value decomposition technique (HOSVD). However, the tensor is very sparse because the number of tagged items is smaller than the amount of all items. The previous research do not consider the previous behaviors of users and items. To mitigate the problems, in this paper, the item-based collaborative filtering scheme is used to build an extended data. We also apply the probabilistic ranking algorithm considering the user and item profiles to improve the recommendation performance. The proposed method is evaluated based on Movielens dataset, and the results show that our approach improves the performance compared to other methods.

Recursive Nullspace Calculation for Multiuser MIMO Systems (다중 사용자 MIMO 시스템을 위한 순차적 영공간 계산)

  • Joung, Jin-Gon;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1238-1243
    • /
    • 2007
  • The computational complexity for the zero-forcing (ZF)-based multiuser (MU) multiple-input multiple-output(MIMO) preprocessing matrices can be immoderately large as the number of transmit antennas or users increases. In this paper, we show that the span of singular vector space of a matrix can be obtained from the singular vectors of the parted rows of that matrix with computational saving and propose a computationally efficient recursive-algorithm for achieving the ZF-based preprocessing matrices. Analysis about the complexities shows that a new recursive-algorithm can lighten the computational load.

Switching Control for End Order Nonlinear Systems by Avoiding Singular Manifolds (특이공간 회피에 의한 2차 비선형 시스템의 스위칭 제어기 설계)

  • Yeom, D.H.;Im, K.H.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.315-318
    • /
    • 2003
  • This paper proposes a switching control method applicable to any affine, 2nd order nonlinear system with single input. The key contribution is to develop a control design method which uses a piecewise continuous Lyapunov function non-increasing at every discontinuous point. The proposed design method requires no restrictions except full state availability. To obtain a non-increasing, piecewise continuous Lyapunov function, we change the sign of off-diagonal term s of the positive definite matrix composing the former Lyapunov function according to the sign of the Inter-connection term. And we use the solution of inequalities which guarantee each Lyapunov function is non-increasing at any discontinuous point.

  • PDF

COLLOCATION APPROXIMATIONS FOR INTEGRO-DIFFERENTIAL EQUATIONS

  • Choi, Moon-Ja
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.35-51
    • /
    • 1993
  • This paper concerns collocation methods for integro-differential equations in which memory kernels have a singularity at t = 0. There has been extensive research in recent years on Volterra integral and integro-differential equations for physical systems with memory effects in which the stabilty and asymtotic stability of solutionsl have been the main interest. We will study a class of hereditary equations with singular kernels which interpolate between well known model equations as the order of singularity varies. We are also concerned with the smoothing effect of singular kernels, but we use energy methods and our results involve fractional time in fixed spatial norms. Galerkin methods for our models was studied and existence, uniqueness and stability results was obtained in [4]. Our major goal is to study collocation methods.

  • PDF

Network intrusion detection method based on matrix factorization of their time and frequency representations

  • Chountasis, Spiros;Pappas, Dimitrios;Sklavounos, Dimitris
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.152-162
    • /
    • 2021
  • In the last few years, detection has become a powerful methodology for network protection and security. This paper presents a new detection scheme for data recorded over a computer network. This approach is applicable to the broad scientific field of information security, including intrusion detection and prevention. The proposed method employs bidimensional (time-frequency) data representations of the forms of the short-time Fourier transform, as well as the Wigner distribution. Moreover, the method applies matrix factorization using singular value decomposition and principal component analysis of the two-dimensional data representation matrices to detect intrusions. The current scheme was evaluated using numerous tests on network activities, which were recorded and presented in the KDD-NSL and UNSW-NB15 datasets. The efficiency and robustness of the technique have been experimentally proved.

A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform

  • Sharma, Renu;Jain, Madhu
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1170-1178
    • /
    • 2021
  • This paper proposed a versatile algorithm based on a dual-tree complex wavelet transform for intensifying the visual aspect of medical images. First, the decomposition of the input image into a high sub-band and low-sub-band image is done. Further, to improve the resolution of the resulting image, the high sub-band image is interpolated using Lanczos interpolation. Also, contrast enhancement is performed by singular value decomposition (SVD). Finally, the image reconstruction is achieved by using an inverse wavelet transform. Then, the Gaussian filter will improve the visual quality of the image. We have collected images from the hospital and the internet for quantitative and qualitative analysis. These images act as a reference image for comparing the effectiveness of the proposed algorithm with the existing state-of-the-art. We have divided the proposed algorithm into several stages: preprocessing, contrast enhancement, resolution enhancement, and visual quality enhancement. Both analyses show the proposed algorithm's effectiveness compared to existing methods.

Robust deterministic control for robotic manipulators with uncertainties

  • Kang, Chul-Goo;Horowitz, Roberto;Leitmann, George
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.687-693
    • /
    • 1989
  • A robust deterministic control for a class of singularly perturbed uncertain systems, where uncertainties are characterized deterministically rather than stochastically, is developed based mainly on information available on an uncertain reduced-order system. The deterministic control scheme is applied to the motion control of a n degree of freedom robotic manipulator. The parasitic actuator and sensor dynamics of the manipulator are explicitly considered in the stability analysis of the deterministic controller using a singular perturbation model. Simulation and experimental studies for a two degree of freedom, direct drive SCARA manipulator are conducted to evaluate the effectiveness of the derived control scheme.

  • PDF

Time-Varying Multipath Channel Estimation with Superimposed Training in CP-OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.822-825
    • /
    • 2006
  • Based on superimposed training methods, a novel time-varying multipath channel estimation scheme is proposed for orthogonal frequency division multiplexing systems. We first develop a linear least square channel estimator, and meanwhile find the optimal superimposed sequences with respect to the channel estimates' mean square error. Next, a low-rank approximated channel estimator is obtained by using the singular value decomposition. As demonstrated in simulations, the proposed scheme achieves not only better performance but also higher bandwidth efficiency than the conventional pilot-aided approach.

  • PDF

Constructing Nonlinear Sliding Surface for Spacecraft Attitude Control Problems

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.41-44
    • /
    • 1999
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters(MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  • PDF

Stability Margin of Discrete-Time LQR with Cross-Product Term in Performance Index (가격함수에 교차곱항이 포함된 이산시간 LQR의 안정성 여유)

  • 최재원;황태현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.856-860
    • /
    • 2002
  • The guaranteed stability margin of LQ optimal regulators with cross-product terms in a performance index is derived for the discrete-time case. In order to obtain the guaranteed stability margin, the singular value of the return difference matrix is examined. A numerical simulation is provided to demonstrate the validity of the derived stability margin.