• Title/Summary/Keyword: Singular System

Search Result 458, Processing Time 0.027 seconds

Analysis of Three-Dimensional Cracks in Inhomogeneous Materials Using Fuzzy Theory

  • Lee, Yang-Chang;Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.119-123
    • /
    • 2005
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. 3D finite element method(FEM) was used to obtain the SIF for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy theory. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete FE model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. The results were compared with those surface cracks in homogeneous materials. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

ON THE EXISTENCE OF POSITIVE SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • Rasouli, S.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.557-564
    • /
    • 2012
  • This study concerns the existence of positive solution for the following nonlinear system $$\{-div(|x|^{-ap}|{\nabla}u|^{p-2}{\nabla}u)=|x|^{-(a+1)p+c_1}({\alpha}_1f(v)+{\beta}_1h(u)),x{\in}{\Omega},\\-div(|x|^{-bq}|{\nabla}v|q^{-2}{\nabla}v)=|x|^{-(b+1)q+c_2}({\alpha}_2g(u)+{\beta}_2k(v)),x{\in}{\Omega},\\u=v=0,x{\in}{\partial}{\Omega}$$, where ${\Omega}$ is a bounded smooth domain of $\mathbb{R}^N$ with $0{\in}{\Omega}$, 1 < $p,q$ < N, $0{{\leq}}a<\frac{N-p}{p}$, $0{{\leq}}b<\frac{N-q}{q}$ and $c_1$, $c_2$, ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, ${\beta}_2$ are positive parameters. Here $f,g,h,k$ : $[0,{\infty}){\rightarrow}[0,{\infty})$ are nondecresing continuous functions and $$\lim_{s{\rightarrow}{\infty}}\frac{f(Ag(s)^{\frac{1}{q-1}})}{s^{p-1}}=0$$ for every A > 0. We discuss the existence of positive solution when $f,g,h$ and $k$ satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.

A Study on an Input-Output Controller Based on the Time-Scale Properties of an Underwater Vehicle Dynamics (수중 운동체의 운동 특성을 고려한 입/출력 제어기 구성에 관한 고찰)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper, it is shown that an input-output (I/O) feedback linearized controller can be designed rationally by utilizing the time-scale properties of heave and pitch for an underwater vehicle. It is assumed that the dynamics of the vehicle is restricted to the vertical plane. An output-feedback control is designed, which stabilizes steady cruising paths. It is shown that the vehicle dynamics with acceleration as output becomes minimum phase. The dynamics can be transformed into a reduced system through a kind of partial linearization and singular perturbation technique. The reduced system is not only minimum phase but also exactly I/O linearizable via feedback. The I/O dynamic characteristics of the heave and pitch modes can be made linear and decoupled. Furthermore it becomes independent of cruising condition such as vehicle velocity. This study may help for designing autopilot systems for underwater vehicles.

An Algorithm of the Robot Control Using Image Feature Value (화상 특징량을 이용한 로봇제어 알고리즘)

  • Her, Hyeong-Pal
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.48-55
    • /
    • 1999
  • To cope actively with the changes of external environments, it is necessary that a robot should have visual feedback control (VFC) using image informations. A VFC system consists of a manipulator and camera(s). For the fixed visual system, when feature value are located at the same line, we have a problem of singular value unable to be controlled by VFC. As a solution, we may define state values of the image Jacobians, then, by making comparisons and evaluations of feature values, select available ones. This method, however, has a demerit increasing numbers of feature values. To solve the problem, moving cameras of VFC system actively, we suggest an algorithm which dose not cause singular value, and prove its availability through simulations.

  • PDF

POSITIVE SOLUTION FOR A CLASS OF NONLOCAL ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • AFROUZI, G.A.;ZAHMATKESH, H.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.121-130
    • /
    • 2017
  • This study is concerned with the existence of positive solution for the following nonlinear elliptic system $$\{-M_1(\int_{\Omega}{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^pdx)div({\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)\\{\hfill{120}}={\mid}x{\mid}^{-(a+1)p+c_1}\({\alpha}_1A_1(x)f(v)+{\beta}_1B_1(x)h(u)\),\;x{\in}{\Omega},\\-M_2(\int_{\Omega}{\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^qdx)div({\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^{q-2}{\nabla}v)\\{\hfill{120}}={\mid}x{\mid}^{-(b+1)q+c_2}\({\alpha}_2A_2(x)g(u)+{\beta}_2B_2(x)k(v)\),\;x{\in}{\Omega},\\{u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}$ is a bounded smooth domain of ${\mathbb{R}}^N$ with $0{\in}{\Omega}$, 1 < p, q < N, $0{\leq}a$ < $\frac{N-p}{p}$, $0{\leq}b$ < $\frac{N-q}{q}$ and ${\alpha}_i,{\beta}_i,c_i$ are positive parameters. Here $M_i,A_i,B_i,f,g,h,k$ are continuous functions and we discuss the existence of positive solution when they satisfy certain additional conditions. Our approach is based on the sub and super solutions method.

A research on the design parameters for a double-transmission main system for sustainable water supply (이중송수관로를 이용한 안정적인 송수를 위한 설계인자에 관한 연구)

  • Hyun, Inhwan;Hong, Juneui;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.129-138
    • /
    • 2013
  • Water interruption is often caused by a rupture in the branch-like singular pipeline. This will cause critical complaints from household and may decrease public service quality. As an alternative of singular pipeline, additional parallel pipeline could be installed for sustainable water supply. This system is called double pipeline system and able to be utilized for water transmission line between treatment plant and distribution reservoir. Construction of double pipeline was thought to increase capital cost, which can be an issue to waterworks authorities. Reducing capital cost was possible by means of installing connectors between two parallel pipelines because of reduced diameter of each pipe. To obtain optimal design condition for connectors, it was necessary to compare water pressure according to accident location, to investigate flow according to connection pipe spacing, connection pipe diameter, and aging of pipe. Reliable and economical connection layouts were determined based on these results. The cost estimation for each design condition was carried out. Cost was approximately reduced by 20 ~ 30 % compared to the double pipeline without connections. In addition to this, connection between double pipelines could expect extra benefits for maintenance since the pipe could be repaired and rehabilitated without interruption.

ASYMPTOTIC STUDY OF MIXED ROTATING MHD SYSTEM

  • Selmi, Ridha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.231-249
    • /
    • 2010
  • Asymptotic behavior of three-dimensional mixed, periodic and rotating magnetohydrodynamic system is investigated as the Rossby number goes to zero. The system presents the difficulty to be singular and mixed, that is hyperbolic in the vertical direction and parabolic in the horizontal one. The divergence free condition and the spectral properties of the penalization operator are crucial in the proofs. The main tools are the energy method, the Schochet's method and products laws in anisotropic Sobolev spaces.

Robust Control Design for Robots with Flexible Joint and Link

  • Jung, Eui-Jin;Ha, In-Chul;Kim, Chang-Gyul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.113.5-113
    • /
    • 2001
  • In this work, we consider the flexible manipulator system. Generally, the manipulator system may often be made on the base of the imperfect modeling, joint friction, payload change, and external disturbances. These elements are uncertain factors. These uncertainties and flexibility make difficult to control the system. To overcome these defects, a class of robust control law is proposed for the flexible manipulator system and the singular perturbation approach is applied. To show the effectiveness of this control law, simulation is presented for one degree of freedom flexible joint and flexible link system.

  • PDF

The Level Control System Design of the Nuclear Steam Generator for Robustness and Performance

  • Lee, Yoon-Joon;Lee, Heon-Ju;Kim, Kyung-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.157-168
    • /
    • 2000
  • The nuclear steam generator level control system is designed by robust control methods. The feedwater controller is designed by three methods of the H$\infty$, the mixed weight sensitivity and the structured singular value. Then the controller located on the feedback loop of the level control system is designed. For the system performance, the controller of simple PID whose coefficients vary with the power is selected. The simulations show that the system has a good performance with proper stability margins.

  • PDF