• 제목/요약/키워드: Singular Perturbed Problems

검색결과 24건 처리시간 0.025초

The Possibility of Neural Network Approach to Solve Singular Perturbed Problems

  • Kim, Jee-Hyun;Cho, Young-Im
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.69-76
    • /
    • 2021
  • 최근 특이성 교란 미적분 경계값 문제를 해결하기 위해 신경회로망 접근이 연구되고 있다. 특히 다양한 학습 알고리즘을 가진 백프로파게이션 알고리즘에 의해 훈련하는 피드-포워드 신경회로망의 이론적 모델이 제시되고 있으며, 딥러닝, 전이학습, 연합학습 등의 신경회로망 모델이 매우 빠르게 개발되고 있다. 본 논문의 목적은 특이성 교란 문제를 점근법적 방법과 함께 해결하기 위해 고도의 정확성과 속도를 가진 신경회로망 접근법에 관해 연구하는 것이다. 이를 위해 본 논문에서는 특이성 교란문제의 결과치와 교란되지 않은 문제의 결과치의 차이에 대해 신경회로망 접근 식을 사용하여 시뮬레이션 하였고 신경회로망 접근식의 효율성도 제시하였다. 결론적으로 특이성 교란 문제를 수식이 아닌 단순한 신경회로망 접근으로 효율적으로 해결할 수 있음을 제시한 것이 본 논문의 주요 기여사항이다.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH A SMALL NEGATIVE SHIFT

  • Rao, R. Nageshwar;Chakravarthy, P. Pramod
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.131-145
    • /
    • 2013
  • In this paper, we present an initial value technique for solving singularly perturbed differential difference equations with a boundary layer at one end point. Taylor's series is used to tackle the terms containing shift provided the shift is of small order of singular perturbation parameter and obtained a singularly perturbed boundary value problem. This singularly perturbed boundary value problem is replaced by a pair of initial value problems. Classical fourth order Runge-Kutta method is used to solve these initial value problems. The effect of small shift on the boundary layer solution in both the cases, i.e., the boundary layer on the left side as well as the right side is discussed by considering numerical experiments. Several numerical examples are solved to demonstate the applicability of the method.

AN ASYMPTOTIC INITIAL VALUE METHOD FOR SECOND ORDER SINGULAR PERTURBATION PROBLEMS OF CONVECTION-DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Valanarasu, T.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.141-152
    • /
    • 2007
  • In this paper a numerical method is presented to solve singularly perturbed two points boundary value problems for second order ordinary differential equations consisting a discontinuous source term. First, in this method, an asymptotic expansion approximation of the solution of the boundary value problem is constructed using the basic ideas of a well known perturbation method WKB. Then some initial value problems and terminal value problems are constructed such that their solutions are the terms of this asymptotic expansion. These initial value problems are happened to be singularly perturbed problems and therefore fitted mesh method (Shishkin mesh) are used to solve these problems. Necessary error estimates are derived and examples provided to illustrate the method.

PERFORMANCE OF RICHARDSON EXTRAPOLATION ON SOME NUMERICAL METHODS FOR A SINGULARLY PERTURBED TURNING POINT PROBLEM WHOSE SOLUTION HAS BOUNDARY LAYERS

  • Munyakazi, Justin B.;Patidar, Kailash C.
    • 대한수학회지
    • /
    • 제51권4호
    • /
    • pp.679-702
    • /
    • 2014
  • Investigation of the numerical solution of singularly perturbed turning point problems dates back to late 1970s. However, due to the presence of layers, not many high order schemes could be developed to solve such problems. On the other hand, one could think of applying the convergence acceleration technique to improve the performance of existing numerical methods. However, that itself posed some challenges. To this end, we design and analyze a novel fitted operator finite difference method (FOFDM) to solve this type of problems. Then we develop a fitted mesh finite difference method (FMFDM). Our detailed convergence analysis shows that this FMFDM is robust with respect to the singular perturbation parameter. Then we investigate the effect of Richardson extrapolation on both of these methods. We observe that, the accuracy is improved in both cases whereas the rate of convergence depends on the particular scheme being used.

FITTED MESH METHOD FOR SINGULARLY PERTURBED REACTION-CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY AND INTERIOR LAYERS

  • Shanthi V.;Ramanujam N.;Natesan S.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.49-65
    • /
    • 2006
  • A robust numerical method for a singularly perturbed second-order ordinary differential equation having two parameters with a discontinuous source term is presented in this article. Theoretical bounds are derived for the derivatives of the solution and its smooth and singular components. An appropriate piecewise uniform mesh is constructed, and classical upwind finite difference schemes are used on this mesh to obtain the discrete system of equations. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are provided to illustrate the convergence of the numerical approximations.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS ARISING IN CHEMICAL REACTOR THEORY

  • Andargie, Awoke
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.411-423
    • /
    • 2010
  • In this paper, a numerical method for singular perturbation problems arising in chemical reactor theory for general singularly perturbed two point boundary value problems with boundary layer at one end(left or right) of the underlying interval is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

APPROXIMATION OF DERIVATIVE TO A SINGULARLY PERTURBED REACTION-CONVECTION-DIFFUSION PROBLEM WITH TWO PARAMETERS.

  • Priyadharshini, R. Mythili;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.517-529
    • /
    • 2009
  • In this paper, a singularly perturbed reaction-convection-diffusion problem with two parameters is considered. A parameter-uniform error bound for the numerical derivative is derived. The numerical method considered here is a standard finite difference scheme on piecewise-uniform Shishkin mesh, which is fitted to both boundary and initial layers. Numerical results are provided to illustrate the theoretical results.

  • PDF