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PERTURBED REACTION-CONVECTION-DIFFUSION
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ABSTRACT. In this paper, a singularly perturbed reaction-convection-diffusion
problem with two parameters is considered. A parameter -uniform error
bound for the numerical derivative is derived. The numerical method con-
sidered here is a standard finite difference scheme on piecewise-uniform
Shishkin mesh, which is fitted to both boundary and initial layers. Numer-
ical results are provided to illustrate the theoretical results.
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1. Introduction

The theory of singular perturbation is not a settled direction in mathematics
and the path of its development is a dramatic one. In the intensive develop-
ment of science and technology, many practical problems, such as the mathe-
matical boundary layer theory or approximation of solution of various problems
described by differential equations involving large or small parameters, become
more complex. In some problems, the perturbations are operative over a very
narrow region across which the dependent variable undergoes very rapid changes.
These narrow regions frequently adjoin the boundaries of the domain of inter-
est, owing to the fact that the small parameter multiplies the highest derivative.
Consequently, they are usually referred to as boundary layers in fluid mechanics,
edge layers in solid mechanics, skin layers in electrical applications, shock layers
in fluid and solid mechanics, transition points in quantum mechanics.

Methods for the numerical solution of problems involving singularly perturbed
second order differential equations with two parameters, using special piecewise
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uniform meshes have been considered widely in the literature(see [1] - 7], and
references therein). While many finite difference methods have been proposed to
approximate such solutions, there has been much less research into the finite-
difference approximation of their derivatives, even though such approximations
are desirable in certain applications. It should be noted that for convection-
diffusion problems, the attainment of high accuracy in a computed solution
does not automatically lead to good approximation of derivatives of the true
solution. A few articles (see [8] - [10] and reference therein ) are available in
the literature for approximation to the derivative of the solution of singularly
perturbed problems. So often the main objective in the investigation of heat
and mass transfer processes is to determine derivatives for small values of the
parameter, for example if it is necessary to find skin friction and/or heat and
diffusion fluxes in problems of flow around some body for large Reynolds and
Peclet numbers.

In [10], for singularly perturbed convection-diffusion problems with contin-
uous convection coeflicient and source term estimates for numerical derivatives
have been derived. Here the scaled derivative is taken on whole domain where as
Natalia Kopteva and Martin Stynes [8] have obtained approximation of deriva-
tives with scaling in the boundary layer region and without scaling in the outer
region. In [11], the authors have obtained bounds on the errors in approxima-
tions to the scaled derivative in the whole domain in the case of discontinuous
source term. In [13], the authors have estimated the scaled derivative for a singu-
larly perturbed second -order ordinary differential equation with discontinuous
convection coefficient using hybrid difference scheme.

The two-parameter problem to be considered in this paper is

Lu(z) = eu(z) + pa(z)u/(z) — b(x)u(z) = f(z), z€Q=(0,1), (1)
w(0) = ug, u(l)=1u1, (2)

where u € Y = CYQ) N C?3(N), 0 < e < 1,0 < p < 1, the coefficients a, b, f

— b

are sufficiently smooth and a(z) > a > 0, b(z) > 8 > 0,V € Q, vy = min -
Q

When the parameter ¢ is small and g = 1, the problem is the well-studied one-
dimension convection-diffusion problem. In this case, a boundary layer of width
O(e) appears in a neighbourhood of the point £ = 0. When the parameter y =0
and ¢ is small the problem is called reaction-diffusion and boundary layers of
width O(y/€) appear at both the ends * = 0 and z = 1. As done in [5], we
consider two cases au? > ve and au? < .

Using the results available in 5, 7], we obtain an approximation to the scaled
first derivative of the solution of the two-parameter singularly perturbed second
order ordinary differential equation. The scaling is not carried out throughout
the domain. In fact we obtain numerical approximation for scaled derivative in
boundary layer regions and non-scaled derivative in the outer region separately
for the above two parameter problem (1-2).
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Note. Through out this paper, C denotes a generic constant that is independent
of the parameters e, 4 and N, the dimension of the discrete problem. Let y :
D — R, (D C R). The appropriate norm for studying the convergence of
numerical solution to the exact solution of a singular perturbation problem is

the supremum norm || y || p= sup |y(z)|.
zeD
For the sake of completeness, we now reproduce the following analytical re-
sults, computational method and error estimates from [5] for the above problem
(1-2).
In the rest of this || . || means || . |lg .

Lemma 1. Ifu € Y such that u(0) > 0, u(1) > 0 and Luf{z) <0, for z € Q
then u(z) > 0, for all x € Q.

Lemma 2. If u is the solution of the continuous problem (1-2), then
1
v ||< Cmax{|u(0)], lu(1)[} + 3 A

Lemma 3. Assume that a,b, f € C%(Q), the derivatives of the solution u of the
continuous problem (1-2) satisfy the following bounds

¢ Z —
lu® (@) | < (\/E)k(l + (%)k)max{ll wl, LAy k=12, (3)
C M !
lu® (@) || < (\/5)3(1+(7E)3)max{|| wll, 1L A1 (4)
where C depends only on || a ||, || & |l,]| & | and || 8" || .

Lemma 4. The solution u of the continuous problem (1-2) can be decomposed
as u = v+ w; +w, on [0, 1] where

Lv=f, v(0), v(1), suitably chosen (5)
Lw; =0, wi(0) = u(0) — v(0), wy (1) =0 (6)
Lw, =0, wr(0) =0, w,(1) = u(l) —v(1). (7)

The regular component v and its derivatives satisfy

H U(k)(x) || < C, k=0,1,2, (8)
140 | < <. Q

The singular components w; and w, and their derivatives satisfy similar bounds
stated in Lemma 3.

Further we can obtain the following sharper bounds on the derivatives of the
singular components.
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Lemma 5. The singular components w; and w, and their derivatives satisfy

Hk ,—0,2 : 2
C(=)e if ap® > e
k 3
wP(@) < {7el o (10)
Cek/2g=01, if ap? <7e
Cp~Fre-02(1-2) if au®> e
(k) p : p >y
(@) < {Cs“k/ze'ezu_z), if ap® < e, 1)
fork=10,1,2,3, where
%, if ap®>~e %, if ap®>e
6 = VYo ’ b2 = Yo
Y if ap®<n~e vre 2 < e
NG f op® <~y N f op® <y

Discrete Problem:

A fitted mesh method for the continuous problem (1-2) is now introduced. On
Q) a piecewise uniform mesh of N mesh interval is constructed. The domain € is
subdivided into three subintervals [0, o1]U[01, 1 —02]U[1 —02, 1] where the tran-

sition parameters are given by oy = min{z, o InN} and 03 = min{Z, o InN}.
1 2

We denote the step size in each interval by hy = 401 /N, hy =2(1—01—02)/N

and hg = 402/N. The mesh points are given by

ihi, 0
2= o1+ (i — J)he, 4 <is<
l—oa+ (i — 3 )hs, 3F <i<N.

On the piecewise-uniform mesh ﬁN = {azz}?\, a standard upwind finite difference
scheme is used. Then the discrete problem corresponding to the continuous
problem (1-2) is

LNU(z;) = e0?U () + pa(x:) DY U (x;) — b(@:)U (x:) = f(2:), i€ QN

Ulzo) = uo, Ulzy) =u (12)

where 62U (x;) = %r%, where
U(ziy1) = U(zs) and D~U(z) = Ulz;) — U(xi—l)‘

D+U(.Z'l) =
Ti41 — X5 Ti— Ti-1

Then LV satisfies the discrete minimum principle on Q. Results stated in
the following lemmas and theorem are available in [5].

Lemma 6. If Z(z;) is any mesh function and Z(xzo) > 0, Z(zy) > 0 and
INZ(x)) <0 fori=1,...N—1, then Z(x;) >0 for alli, 0 <i < N.
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Analogous to the continuous case we decompose the discrete solution as U =
V + Wi, + Wg, where

LYV = f(=z:), V(0) = v(0), V(1) = v(1),
LYW, =0, WL (0) = w;(0), W(1) =0
LN"Wg =0, Wgr(0) =0, Wr(1) = w,(1).

Lemma 7. At each mesh point =; € ﬁN, the reqular component of the error
satisfies the estimate

(V —v)(z;)| < C(2 —z;)N~L.

Lemma 8. At each mesh point x; € QN, the singular component W = Wy +Wpg
of the error satisfies the estimate
(W —w)(x;)] < CN"Y(InN)2
Theorem 1. Let u be the solution of the continuous problem (1-2) and U be the
solution of the corresponding discrete problem (12). Then at each mesh point
x; € ﬁN,we have
(U —u)(zs)] < CN~HInN)2.

2. Analysis on derivative estimate

In this section error estimates for the scaled derivatives of the solutions of
(1-2) are given.
In the rest of the paper, p stands for
g/, for, 0<i<N/4-1,
p=191, for, N/4 <i<3N/4, if ap®>ne
78 for, 3N/44+1<i<N,
and
Ve, for, 0<i<N/4-1,
p=1<1, for, N/4<i<3N/4, if ap®<~e.
Ve, for, 3N/4+1<i<N,
Lemma 9. At each mesh point x; € QN and for all x € Q; = [x;, 2;41], we have
lp(DYu(x;) —u/(2))] < CN 'InN.
where u(x) is the solution of (1-2).

Proof. Any function ¢ € 02( ) satisfies the identity

D p(xi) — ¢’ o fdeds— [ ¢"(pde. (13
ey =@ < —— [ [ soaas— [ s oy

Ti+1l — s=x;
From which it follows that

ID*¢(:) ~ ¢'(2)] < S (wivr — @) | 6@ - (14)

[N-A R
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For all z; € QV, we have
lp(D*u(z:) — u'(2))] < |p(DFv(@:) — ' ()| + |o(DTw(zs) —w'(2))]-
Now, we have
[(DFo(z) = ' (2))] < Cl@i —z:) | VP | <ONTH (15)

which gives the required bound for the first term. To bound the second term,
we consider the following cases.

Case 1: ap® > ~e.

We have

(DY w(z:) —w'(@)|] < Claum — )|l pw® | + Il pw )
Claig —z:) for,0 <i< N/4d—1,
< S C(zigr — :L'l)T| pw® || for,N/4 <i < 3N/4,
C(mip1 —xi)p?! for,3N/44+1<i < N.

When o, = 1/4 and o = 1/4, we have (z;41 — ;) = N1, g < ClnN and
p~1 < Cln N. Therefore, we have
lp(DTw(z;) —w'(z))] < CN'InN.

2
When o1 = a—Z InN, g = 2—HlnN, for z; € (0,0,) and z; € (1 — 09, 1), we have
Y

lp(DTw(z;) —w'(z))] < CN 'InN.
For z; € [01,1 — 03], using triangle inequality we have
(Dt w(z;) —w'(z))] < CN~'InN.

Case 2: au® < 7e.
Using the technique and procedure adopted in Case 1, one can easily obtain

|p(DTW (z;) —w'(z))| < CN~"'lnN. O

Lemma 10. Let v and V be the exact and discrete reqular components of the
solutions of (1-2) and (12) respectively. Then we have

|pDt(V(z;) —v(z:))] < CN7Y forall xz;€QN.

Proof. For convenience we introduce the notation

e(zi) = V() —v(z;) and 7(x;) = LVe(z;).
We want to prove that for alli, 0<i< N -1, |pD%e(z;)| < CN~!. Using
the result from Lemma, 7, we have

IpD* e(anyay)| = LX) Dl gyt g

TN/4 — TN/a-1
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To prove the result for 0 < i < N/4—2, we rewrite the relation 7(z;) = LY e(z;),
in the form,
eD*e(w;) - eD*elw;-1) + Sz — 25 1)ale;) D elx;)
. (1)
= 3 (@41 — z-1)[r(2;) + b(xs)e(x;)).

Case 1: ap® > ~e.
Multiplying the above equation by !, summing and rearranging, we obtain

N/a—1
|pD*e(z:)] < [pDFe(znya1)] + ﬂl > (@1 —a-)[r(a;) + b(x;y)e(a;)]]
j=i+1
L N
+35l > (@01 —z1)a(z;) DV e(x;)|-
j=it1

Using the telescoping effect for the last term, (16), |7(z;)| < CN ! and |e(z;)| <
CN~1and |a(z;)—a(z;—1)| <|| @ || (z;—z;-1), we get forall 4, 0 < i < N/4-1,

lpD%e(z;)| < CN L.
we rewrite the relation (17) in the form,

(1+0)DVe(z;) = D¥e(zj—1) + —2—(7(z;) +b(z;)e(z;)),  (18)

a(z;)p
alx;)p{xs — z5_ ,
where g; = () ]2+1 z 1). Summing these equations from j = 1 to N/4,
€
we get
—(N/4-1)
|D+e(:rN/4)| < |D+e(:ro)\(1—+—w—— + CN‘l, where o= ahip
1+ on/4 €

CN~?
1+ 4ao1p/(Ne)

< pCN7te?t +CN™?, since (1+ 0) " M* <CN™2
< CON7.

Summing the equations in (18) from j = N/4 to j =i < 3N/4, we get

14 5)-(—N/2-1) oh
D¥e(e)] < 1D e(zna) 1D N where = 22
< CON7L
For i = 3N/4,
{4 5 (V/A-D) )
D¥e(esna)l < D elonya)l 2 oN-Y,

1+ 03ny4
CN—L

IN
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Multiplying throughout by p and summing the equations in (18) from j = 3N/4
to j =1 < N, we get

1 4+ §)—(—N/a-1) R h
luD%e(z:)] < |uD*e(wansa)l Chat) +CN™Y, where p = L2
1+0: H
< CN7.
Similarly we can prove the result for the case au? < ~e. O

Lemma 11. Let w and W be the exact and discrete singular components of the
solutions of (1)-(2) and (12) respectively. Then for all z; € QN we have

|pDT (W (z;) —w(z:))] < CN~'(InN)%

Proof. Consider the following cases.

Case 1: ap® > ~e.

From the particular choice of transition point and from [5, Theorem 4.1] we
have
|W (z;)] < CN~2, |w(x;)] < CN~2 for all z; € QN N [o1,1 — o). This implies
that

|DY(W — w)(z:)] <CN7Y, for a; € Q¥ Nior,1— a2

For z; = 01, we write LNW(0,) = 0 in the form
IpD W (o1 — )] = (1~ 2a(o1))(e/w)D* W) — £h(o1)haW(on)] < ON 7
Also we note that |pDtw(o1 — hy)| < CN~L Thus |[pDH(W — w)(zn/a-1)] <
CN—L.

Now consider z; € [0, 01). For convenience we introduce the notation

é(x;) = (W —w)(z;) and 7(x;) = LV é(zs).

We have already established that |é(x;)| < CN~!(InN)? and

Coyple 2N-lg—orzim1/e (<4< N/4

19
Cogu~'N—le—"@i-1/n 3N/4 < i< N. (19)

|7(x:)| < {

We write the equation 7(z;) = LY é(z;) in the form
eD*(é(z;) = é(z-1)) + Sa(a;) (@1 — x-1)D* e(a;)
1 . 1 .
—50(@) (@i — zj-1)é(z5) = 5 (@501 — 2-1)7(25)-

-1

Multiplying the above equation by u~!, summing and rearranging, we obtain

pDTe(x:) = pDYe(xnja1) + (a(@n/a-1)é(@n/a) — al@i1)é(z:))
N/4-1 N/4—1
= 3 (alwy) - alzio)é(m) — = Y [bley)haéles) + hit(@)]

j=i+1 j=i+1
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Hence using the result at the point zx/4_, and (19), we have

afthy /e

+ Al -1 2 ﬂ—-—
‘pD 6(50;)‘ < CN ((IHN) + € l_e—a/ﬂn/&

).

Let y = aphi/e = AN~'InN. Then B(y) = is bounded and it follows
that
|pD*é(x;)] < CN~Y(In N)? as required. Similarly, [pD7é(x;)] < CN~1(InN)?,
for z; € (1 — 09, 1].

When ¢, = 1/4and 02 = 1/4, the mesh is uniform. Using the above procedure
one can prove |pD%é(z;)] < CN~1(In N)2.

Case 2: au® < ~e.

Similar to Case 1, one can easily obtain the required result. This completes
the proof. O

¥
1—eV

Theorem 2. Let u be the solution of (1)-(2) and U the numerical solution of
(12). Then for each i,0 <i < N — 1 we have
Ip(DFU(:) =) Iy, < CN"'nN)?, if, ap’®>ne
and
I p(DTU(z) =) lg, < CN'(InN)? if, ap® <»e,
where C is independent of €, u and N.

Proof. From triangular inequality we have
p(DU () — ' (2))] < [pDY (U = u)(@i)] + |p(D" ul:) — u'(2))]-

From Lemma 9 we get |p(DVu(z;) —u/(z))| < CN 1o N. To bound |pD+ (U —
u)(z;)], it can be written as

pDT(U ~ u)(:)| < [pD*(V —w)(@)| + |pDT (W — w)(z:)]
< CN7Y(InN)?,
by Lemmas 10 - 11. Hence the proof. O

Remark. Let U denote the piecewise linear interpolant over 0 of the discrete so-
lution U on ﬁN. Since pU is a linear function in the open interval ; = (z;, Zi41)
for each 4,0 < ¢ < N — 1, we have pU’(z) = pD*TU(x;) for all z € Q;. It then
follows, from Theorem 2, that pU’ is an (g, u)—uniform approximation to pu’(z)
for each x € (x4, ;11). We now show that this approximation can be extended in
a natural way to the entire domain Q. We define the piecewise constant function
DtU on [0,1) by pD*U(z) = pDtU(x;), for =€ [z4,2i11),i=0,..,N—1
and at the point « = 1 by pDTU(1) = pD*U(zy_1). Then, from the above
theorem, pD*U is an (e, u)—uniform global approximation to pu’ in the sense
that

| pDHU — < CN ™ (In N)P.
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3. Numerical results

In this section, we present an example to illustrate the result obtained in this
paper.
Example.[7]. Consider the singularly perturbed boundary value problem
eu"(x) + p(l + z)u'(z) —u(z) = (1+2)% = € (0,1)
u(0) =0, wu(l)=0.
Let UN be a numerical approximation for the exact solution u on the mesh
QY and N is the number of mesh points. For all integers N,2N satisfying

N € Ry = [32,64,128,256,512,1024], we compute the maximum pointwise
two-mesh differences for the cases au? > ve and ap? < ve respectively as

max |(e/p)(DYUN — DYUN)(z,)|, for 1<i<N/4-1
DY, = { max |(DYUN — DTUN)(z;)|, for N/4<i<3N/4
max |u(DYUN — DHUN)(x;)], for 3N/4+1<i<N,
and
max |\/e(DTYUN — DYU?N)(z;)|, for 1<i<N/4—-1
DY, = { max|(DYUN — DUN)(z;)|, for N/4<i<3N/4
max |\/e(DYUN — DYUZN)(z;)|, for 3N/4+1<i<N.
We also compute the e—uniform two-mesh differences as DLV = max Dé\” , and
the (e, p)-uniform two-mesh differences as DV = max Dﬁ' . From these values

n
the local orders of convergence p¥ u» the local order of e—uniform convergence

pfy and the local order of (g, u)—uniform convergence pV are calculated using
DN DN N

N , N N

Pe = log, Dgﬁa b, = log, D;N and p" = log, D2N°

sk H

Table 1 contains the values of DY, p and DV, p" for various values of &, p

in case of pu? > ¢. Table 2 contains the value of DY, pi} and DV, p for various

values of &, 1 in case of p? < e. The numerical results in Table 1 and Table 2
are in agreement with the theoretical parameter-uniform error bound as given
in Theorem 2.
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TABLE 2. Values of DY, pf} and DN, pN for the first deriva-
tive of the solution u on [0, zn/2), [ N/4, T3n/4] and (x3n/a, 1]
respectively.
N z; €0,2n/2) T; € [TN/4, T3ny4] s € (T34, 1]
Dy | mi DY | » Dy [ n
p=27° e¢e{27920
128 | 3.0650e-1 | 6.3996e-1 | 5.0600e-2 | 9.2457e-1 | 2.8816e-1 | 9.3951e-1
256 | 1.9669e-1 | 8.1681e-1 | 2.6658e-2 | 9.6250e-1 | 1.5025e-1 | 9.6950e-1
512 | 1.1166e-1 | 9.0750e-1 | 1.3680e-2 | 9.812%¢-1 | 7.6730e-2 | 9.8474e-1
1024 | 5.9527e-2 - 6.9293e-3 - 3.8773e-2 -
p=2"1" e {27 271}
128 | 6.7777e-1 | 9.3951e-1 | 5.7701e-2 | 9.2215e-1 | 7.9460e-1 | 6.8981e-1
256 | 5.0759¢-1 | 9.6950e-1 | 3.0450e-2 | 9.6129¢-1 | 4.9260e-1 | 7.5766e-1
512 | 3.3678e-1 | 9.8474e-1 | 1.563%e-2 | 9.8074e-1 | 2.9135e-1 | 8.0230e-1
1024 | 2.0658e-1 - 7.9246e-3 - 1.6707e-1 -
"= 2—25’ cc {2—49, 2—1}
128 | 9.9469e-1 | 5.3115e-1 | 5.8021e-2 | 9.2215e-1 | 9.1608e-1 | 6.9689%¢-1
256 | 6.8833e-1 | 6.6471e-1 | 3.0619¢-2 | 9.6137e-1 | 5.6513e-1 | 7.6215e-1
512 | 4.3421e-1 | 7.4879¢e-1 | 1.5725e-2 | 9.8068e-1 | 3.3321e-1 | 8.0498e-1
1024 | 2.5840e-1 - 7.9685e-3 - 1.9072e-1 -
DL [l DN oY DN 'l
128 | 9.9469e-1 | 5.3115e-1 | 5.8021e-2 | 9.2215e-1 | 9.1608e-1 | 6.9689¢-1
256 | 6.8833e-1 | 6.6471e-1 | 3.0619e-2 | 9.6137e-1 | 5.6513e-1 | 7.6215e-1
512 | 4.3421e-1 | 7.4879%-1 | 1.5725e-2 | 9.8068e-1 | 3.3321e-1 | 8.0498e-1
1024 | 2.5840e-1 - 7.9685e-3 - 1.9072e-1 -
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