• Title/Summary/Keyword: Single kinetic rate model

Search Result 29, Processing Time 0.023 seconds

Competitive Adsorption in Binary Solution with Different Mole Ratio of Sr and Cs by Zeolite A : Adsorption Isotherm and Kinetics (스트론튬과 세슘 이온의 혼합 몰비를 달리한 이성분 용액에서 제올라이트 A에 의한 경쟁 흡착: 흡착등온 및 속도해석)

  • Lee, Chang-Han;Park, Jeong-Min;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.151-162
    • /
    • 2015
  • The adsorption characteristics of Sr ions and Cs ions in single and binary solution by zeolite A were investigated in batch experiment. The adsorption rate of Sr ions and Cs ions by zeolite A obeyed pseudo-second-order kinetic model in single and binary solution. The initial adsorption rates (h) and adsorption capacities of both ions obtained from pseudo-second-order kinetic model, and the values were decreased with increasing concentration of the competitive ions (0~1.5 mM). Also, adsorption isotherm data in binary solution were well fitted to the extended Langmuir model, the maximum adsorption capacities of Sr and Cs calculated from the model were 1.78 mmol/g and 1.64 mmol/g, respectively. The adsorption of Sr and Cs ions by zeolite A was carried out in the presence of other cations such as $Na^+$, $K^+$, $Mg^{2+}$ and $Ca^{2+}$. The results showed that the zeolite A can maintain a relatively high adsorption capacity for Sr and Cs ions and exhibits a high selectivity in the presence of competitive cations. The effect of competition had an order of $Ca^{2+}$ > $K^+$ > $Mg^{2+}$ > $Na^+$ for Sr ions and $K^+$ > $Ca^{2+}$ > $Na^+$ > $Mg^{2+}$ for Cs ions at the same cation concentration.

A Novel Oxidation Model with Photolysis for Degradation of Trichlorobenzenes (TCBs)

  • Kim, Jae-Hyoun
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.1-13
    • /
    • 1997
  • First- and second-order kinetic oxidation rates of trichlorobenzenes (TCBs) were obtained and compared by a chemical activation system (CAS) which mimics mixed functional oxidase activity. The system consists of EDTA, ferrous sulfate, ascorbic acid, and $H_2O_2$ in potassium phosphdte buffer (monobasic at pH 7.4). The rate of transformation in CAS was enhanced in the presence and absence of catalase in the sequence 1, 2, 3-TCB < 1, 2, 4-TCB < 1, 3, 5-TCB. In general, the rates of degradation were greater in the test media with catalase. The effect of photolysis on the degradation of the TCBs with the CAS were examined. Sensitized photolysis with nitrite, Fenton's reagent, TiO$_2$ and triethylamine (TEA) studied in concert with the CAS demonstrated significant enhancement of the degradation rate of TCBs. Disappearance rates of TCBs in CAS with prior photolysis or prior photosensitization were at least 10-fold higher than the sum of the rate for each single experiment. This study proves that the combination of the CAS and photolysis can be used as a suitable technique for enhancing degradation of TCBs in aqueous systems.

  • PDF

A Cycle Simulation Method for an HCCI Engine using Detailed Chemical Kinetics (상세화학반응식을 이용한 HCCI 엔진의 성능 해석기법 연구)

  • 송봉하;김동광;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.51-58
    • /
    • 2003
  • A cycle simulation method is developed by coupling a commercial code, Ricardo's WAVE, with the SENKIN code from CHEMKIN packages to predict combustion characteristics of an HCCI engine. By solving detailed chemical kinetics the SENKIN code calculates the combustion products in the combustion chamber during the valve closing period, i.e. from IVC to EVO. Except the combustion chamber during the valve closing period the WAVE code solves thermodynamic status in the whole engine system. The cycle simulation of the complete engine system is made possible by exchanging the numerical solutions between the codes on the coupling positions of the intake port at IVC and of the exhaust port at EVO. This method is validated against the available experimental data from recent literatures. Auto ignition timing and cylinder pressure are well predicted for various engine operating conditions including a very high ECR rate although it shows a trend of sharp increase in cylinder pressure immediate after auto ignition. This trend is overpredicted especially for EGR cases, which may be due to the assumption of single-zone combustion model and the limit of the chemical kinetic model for the prediction of turbulent air-fuel mixing phenomena. A further work would be needed for the implementation of a multi-zone combustion model and the effect of turbulent mixing into the method.

A Numerical Study on the Lean-Rich Interaction of Methane/Air Flames (희박-과농 메탄 화염의 상호작용에 관한 수치해석적 연구)

  • Lee, Seung-Dong;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.377-383
    • /
    • 1996
  • Interaction of flames in a lean-rich concentration field is studied numerically adopting a counterflow as a model problem. Detailed kinetic mechanism is adopted in analyzing the structure of various type of flames which can be found in lean-rich interaction. Flow field is simplified to quasi one-dimensional by using boundary layer approximation and similarity formulation. Triple flames are identified and its structure shows that a diffusion flame is located in the middle of two premixed flames. Such a diffusion flame is formed by $H_2$ and CO generated from the rich premixed flame and $O_2$ leaked from the lean premixed flame. The flame position can be identified either from the hydrogen production rate or the heat release rate. Transition from single diffusion flame to triple flame is observed as degree of premixing is increased.

Analysis of two-stage Continuous Culture System by Transient Response of Single-stage Continuous Culture System (일단 연속 생물반응기의 과도상태 거동을 이용한 이단 연속 생물반응기의 해석)

  • 박성훈;공인수
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.308-316
    • /
    • 1992
  • Two-stage continuous culture system has been studied intensively to maximize the productivity of a cloned gene product in unstable recombinant microorganism. As an effort to optimize the two-stage process, transient behavior of the second-stage was studied theoretically as well as experimentally using Escherichia coli Kl2$\delta$Hl$\delta$trp. A mathematical model describing the transient response to a step change in dilution rate was developed based on the assumption that the adaptation rate of cell growth is proportional to the available growth potential, which is defined as the difference in dilution rates between before and after shift-up. The kinetic parameters appearing in the model equations were the dimensionless step increase in growth rate($\alpha$) and the adaptation rate constant(k). These parameters were evaluated for various dilution rates and temperatures by washout method. This relatively simple adaptation model could predict the specific growth rate of the second-stage successfully. Advantage and disadvantage of the proposed model are also discussed.

  • PDF

Applicability Assessment of Steel Slag as Reactive Capping Material for Blocking Phosphorus Release from Marine Sediment (해양 퇴적물에서 인 용출 차단을 위한 반응성 피복 소재로서 제강슬래그의 적용성 검토)

  • Jo, Sung-Wook;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.11-17
    • /
    • 2014
  • We investigated the applicability of steel slag as a capping material in order to minimize phosphorus(P) release into seawater. Steel slag is a byproduct from the iron and steel industries and the use of steel slag has some advantages in respect of both cost and environmental concern. P removal by steel slag were studied in a batch system with respect to changes in contact time and initial concentration. Kinetic adsorption data were described well by pseudo 2nd order model, indicating rate limiting step for P adsorption to steel slag is chemical sorption. Equilibrium adsorption data fitted well to Langmuir isotherm model which describes for single layer adsorption. The maximum P adsorption capacity of steel slag was 7.134 mg-P/L. Increasing the depth of steel slag produced a positive effect on interruption of P release. More than 3 cm of steel slag was effective for blocking P release and 5 cm of steel slag was recommended as the depth for capping of P contaminated marine sediments. Increasing P concentration and flow rate had a negative effect on P removal ratio. It was concluded that the steel slag has a potential capping material for blocking P release from marine sediments.

Oxygen Adsorption Process on ZnO Single Crystal

  • 전진;한종수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1175-1179
    • /
    • 1997
  • The adsorption of oxygen on ZnO was monitored by measuring the capacitance of two contacting crystals which have depletion layers originated from the interaction between oxygen and ZnO at 298 K-473 K. An admission of oxygen to the sample induced an irreversible increase in the depth and the amount of adsorbed oxygen was less than 0.001 monolayer in the experimental condition. The relation between pressure of oxygen and variation of the depth was tested from the view point of Langmuir or Freundlich isotherm. Using Hall effect measurement and kinetic experiment, a model equation on the adsorption process was proposed. From the results, it was suggested that oxygen adsorption depended on the rate of electron transfer from ZnO to oxygen while the amount of adsorbed oxygen was kinetically restricted by the height of surface potential barrier.

Abnormal Behavior of Ordinary Heterotrophic Organism Active Biomass at Different Substrate/Microorganisms Ratios in Batch Test (회분식 실험 Substrate/Microorganisms 비에 따른 종속영양미생물의 특이거동 연구)

  • Lee, Byung-Joon;Wentzel, M.C.;Ekama, G.A.;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Batch test methods have developed for a long time to measure kinetic and stoichiometric parameters which are required to perform steady state design and mathematical modelling of activated sludge processes. However, at various So/Xo ratios, abnormal behaviors of ordinary heterotrophic organism in batch tests have been reported in many researches. Thus, in this research, abnormal behaviors of heterotrophs in batch tests were investigated at various So/Xo conditions by measuring and interpreting oxygen utilization rate. As So/Xo ratio increased, the calculated values of maximum specific growth rates, ${\mu}_{H,max}$ and $K_{MP,max}$, increased. However, at a certain point of So/Xo (around 10mgCOD/mgMLAVSS), ${\mu}_{H,max}$ and $K_{MP,max}$ values started to decrease. According to this observation, three prominent behaviours of heterotrophs were identified at various So/Xo conditions. (1) At low So/Xo region (below 5 mgCOD/mgMLAVSS), the oxygen utilization rate of heterotrophs in batch tests were almost stable and consequently yielded lower maximum specific growth rate. (2) At high So/Xo region (up to 5~10 mgCOD/mgMLAVSS), oxygen utilization rate incresed sharply with time and indicated more upward curvature than the predicted OUR with conventional activated sludge model, which consists of single hetetrotrophs group. Thus, in this region, competition model of two organisms, fast-grower and slow-grower, seemed to be appropriate. (3) At extremely high So/Xo region (over 10mgCOD/mgMLAVSS), significant oxygen utilization rate was still observed even after depletion of readily biodegradable COD. This might be caused by retarded utilization of intermediates which were generated by self inhibition mechanism in the process of RBCOD uptake.

A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System (SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.

Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals;Time Effects (금속(金屬)-Ligand 착염형성(錯鹽形成)에 의한 중금속(重金屬) 제거(除去) 방법(方法)에 관한 연구(硏究);시간(時間)의 영향(影響))

  • Yang, Jae-E;Shin, Yong-Keon;Kim, Jeong-Je
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.1
    • /
    • pp.51-57
    • /
    • 1993
  • Objective of this research was to assess the influence of reaction time on the heavy metal-organic ligand complexation by employing kinetic models. Aqueous solutions of humic (HA) or fulvic acid (FA) were reacted with metal solutions with 1:1 ratio to form complexes. Efficiency of organic ligand on metal removal was determined by separating the precipitates from solution using $0.45\;{\mu}m$ filter paper. Complexation between Cu or Pb and HA or FA followed the first- or multiple first order kinetics, largely depending on metal concentration and kind of organic ligand. Amounts of precipitates were increased proportionally with reaction time but reached to quasiequilibrium where rate of precipitate formation was not varied with time. Copper-ligand complexation was, irrespective of ligand, fitted to the single first order kinetics at Cu concentrations lower than $300{\mu}M$, but this was fitted to the multiple first order kinetics at Cu concentrations higher than $300{\mu}M$. As increasing Cu concentrations, the precipitates formed more readily, judging from the increased rate constants (${\kappa}$). In the multiple first order kinetics, ${\kappa}$ was decreased as reaction steps proceeded. Most of Cu-ligand precipitates were formed within 15 min. FA precipitated Cu more rapidly than HA did. ${\kappa}$ for Pb-HA complexation was decreased but that for Pb-FA reaction was increased, as increasing Pb concentration. Most of Pb-organic ligand complexation occurred within 30 min. Afterwards, ${\kappa}$ values were relatively small and not affected much by time. Pb was precipitated by humic acid more readily than Cu when metal concnetrations were $200{\sim}300{\mu}M$. However, when metal concentrations were in the ranges of $400{\sim}500{\mu}M$, a reversed tendency was observed.

  • PDF