• Title/Summary/Keyword: Single cell gel electrophoresis (SCGE)

Search Result 40, Processing Time 0.031 seconds

Synergistic Interaction of Radiation with Pesticide on DNA Damage in Human Lymphocytes as Biological Information for Prevention of Environmental Disaster (환경재해 방지를 위한 생물정보로서의 사람 림프구 DNA 손상에 대한 방사선과 살충제의 상승작용)

  • 김진규
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2001
  • Agricultural pesticides may cause certain biological risks since they are widely used to eradicate pests. Agricultural disasters may arise even from the possibility of their synergistic interaction with other harmful enviromnetal factors. The effect of pesticide on radiation-induced DNA damage in human blood lymphocytes was evaluated by the single cell gel electrophoresis (SCGE) assay. The lymphocytes, with or without pretreatment of the pesticide, were exposed to 0-2.0 Gy of $^60 CO$ gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed an excellent dose-response relationship. The present study confirms that the pesticide has the cytotoxic effect on lymphocytes and that it shows the synergistic interaction with radiation on DNA damage as well. The results may have a role of providing biological information necessary for the prevention of environmental disaster.

  • PDF

Protective Effects of a Herb, Menthae Herba, against Radiation-induced Oxidative DNA Damage

  • Jo, Sung-Kee;H, Heon-O;Uhee Jung;Kim, Sung-Ho;Byun, Myung-Woo
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.152-152
    • /
    • 2003
  • As utilization of radiation in medicine, industry and biochemical research increases, the protection against radiation damage has become an important issue. Natural products such as herbal medicines are beginning to receive attention as modifiers on the radiation response. In the present study, the protective effect of a herb, Menthae Herba, against radiation-induced DNA damage was evaluated using alkaline single-cell gel electrophoresis (SCGE; comet assay) in the mouse peripheral blood Iymphocytes and the micronucleus formation test in the Chinese hamster ovary (CHO) cells. The tail moment, which was a marker of DNA damage in the SCGE, and the frequency of micronuclei was decreased in groups treated with Mentae Herba extract before exposure to 200 cGy of gamma-ray. We also confirmed its activities to scavenge DPPH and hydroxyl radicals. These experiments demonstrated that Menthae Herba was effective at reducing the radiation-induced damage of DNA and scavenging free radicals. It is plausible that scavenging of free radicals by Menthae Herba may have played an important role in providing the protection against the radiation-induced damage to the DNA. These results indicated that Menthae Herba might be a useful radioprotector and that radical scavenging appears to be one of the mechanisms of radiation protection.

  • PDF

감마선조사 생약재(H-113)의 산화적 생체손상 억제효과 안정성 평가

  • Oh, Heon;Jung, Woo-Hee;Jung, Il-Yoon;Cheon, Eui-Hyun;Cho, Sung-Ki
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.103.1-103
    • /
    • 2003
  • 건조 생약재의 위생화 수단으로 방사선 조사 기술의 적용 가능성을 검토하기 위하여 감마선 조사 생약의 효능 변화유무를 평가하고자 하였다. 본 연구에서는 감마선 조사 시료와 비조사 시료가 생체의 산화적 손상을 억제하는 효과를 비교하기 위하여 방사선에 의한 산화적 손상에 대한 효과를 측정하였다. 감마선 조사(10 kGy) 생약재(H-113) 및 비조사 생약재(H-113) 추출물을 처리하여 배양한 사람 림프구에 방사선을 조사한 후, 단세포전기영동(single-cell gel electrophoresis, SCGE; comet assay)을 수행하여 DNA 상해 경감정도를 관찰하였다. 또한 방사선 조사 및 비조사 생약재(H-113) 추출물을 투여한 생쥐에 8 Gy의 감마선을 조사한 후, 간에서 지질과산화 정도를 비교·관찰하였다. 한편 DPPH 라디칼과 hydroxyl 라디칼 소거효과를 시험관내에서 상호 비교하였다. 감마선 조사 생약재(H-113)는 단세포전기영동, 지질과산화, DPPH 및 hydroxyl 라디칼 소거시험에서 비조사 생약재 (H-113)와 유사한 효과를 나타내어 효능 차이가 인정되지 않았다. 이는 생약재의 여러 가지 고유 효능 중 일부의 안정성을 확인한 것으로 생각되며, 이러한 결과를 바탕으로 감마선 조사 생약재의 고유 효능의 안정성에 관한 체계적인 연구결과를 얻는다면 생약재의 위생화 수단으로 감마선 조사 기술의 이용이 실용화될 수 있을 것으로 사료된다.

  • PDF

Protective Effect of Yellow-Green Vegetable Juices on DNA Damage in Chinese Hamster Lung Cell Using Comet Assay (Comet Assay를 이용한 케일, 명일엽, 당근, 돌미나리 녹즙의 Chinese Hamster Lung 세포 DNA 손상 보호 효과)

  • 전은재;김정신;박유경;김태석;강명희
    • Journal of Nutrition and Health
    • /
    • v.36 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • The present study was attempted to investigate the antioxidant capacity of popular yellow-green vegetable juices (kale, Angelica keishei, carrot, small water dropwort) and to investigate the effect of vegetable juices on protecting oxidative damage to DNA in cultured Chinese hamster lung (CHL) cells. Antioxidant capacity was analyzed by TRAP assay (Total radical-trapping antioxidant potential). Cellular DNA dmamage was measured by SCGE (single-cell gel electrophoresis, also known as comet assay. Cells incubated in medium with PBS (negative control) or with various concentration of the freeze dried green juices (25, 50, 100, 250 $\mu\textrm{g}$/$m\ell$) resuspended in PBS were treated with $H_2O_2$ (200 ${\mu}{\textrm}{m}$) as an oxidative stimulus for 5 min at 4$^{\circ}C$. The physiological function of each vegetable juice on oxidative DNA damage was analyzed and expressed as tail moment (tail length X percentage migrated DNA in tail) . Kale juice had the highest TRAP value suggesting that kale has the highest antioxidant capacity followed by Angelica keishei, small water dropwort and carrot. Cells treated with $H_2O_2$ had extensive DNA damage compared with cells treated with PBS or pre-treated with vegetable juice extracts. All green juices inhibited $H_2O_2$-induced DNA damage with kale being the most effective juice among the tested juices. These results indicate that green juice supplementation to CHL cells followed by oxidative stimulus inhibited damage to cellular DNA, supporting a protective effect against oxidative damage induced by reactive oxygen species. (Korean J Nutrition 36(1) : 24-31, 2003)

Protection of ROS-induced cytotoxicity and DNA damage by the extract of Alpinia of ficinarum (양강추출물의 활성산소종 유도 세포독성과 DNA 손상에 대한 방어효과)

  • 이승철;신경승;허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.2
    • /
    • pp.106-116
    • /
    • 2002
  • The 70% ethanol extract of Alpinia officinarum and its major flavonoid, galangin showed strong antioxidative effect on the lipid peroxidation of ethyl linolate with Fenton's reagent and free radical scavenging effect to DPPH radical generation. However, they did not reveal any pro-oxidant effect on bleomycin-Fe(III) dependent DNA degradation. They also showed the protective effect against $H_2O$$_2$, KO$_2$ or UV-induced cytotoxicity in mammalian cells. They also showed the suppressive effect of DNA damage induced by $H_2O$$_2$ or KO$_2$ with dose-dependent manner in single cell gel electrophoresis(SCGE) assay. On the other hand, they have an anticlastogenic effect against adriamycin-induced micronucleated reticulocyte in peripheral blood of mice. These results suggest that the mechanism of inhibition by 70% ethanol extract of Alpinia officinarum and galangin against reactive oxygen species (ROS)-induced genotoxicity or cytotoxicity is due, at least partly, to their antioxidative and free radical scavenging properties without pro-oxidant effect. All these results indicate that 70% ethanol extract of Alpinia officinarum and galangin may be useful for protection against ROS-induced cytotoxicity and DNA damage.

Comet Assay as a New DNA-Level Approach for Aquatic Ecosystem Health Assessments

  • Sung, Min-Sun;Lee, Sang-Jae;Lee, Jae-Hoon;Park, Sun-Young;Ly, Sun-Yung;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.466-471
    • /
    • 2008
  • Little is known about DNA-level and physiological levels for health assessments of stream or river environments. Recently, comet assay, so called Single Cell Gel Electrophoresis (SCGE) is introduced for assessments of DNA damage in the medical science, food science and mammal toxicology. The comet assay is known as a biomarker which is one of the best barometers in assessing the DNA damage by oxidative stress. In this study, we conducted the comet assay using sentinel species, Zacco platypus, as one of the pre-warning alarm systems for the aquatic ecosystem health assessments and also applied it to Gap Stream as a model system. Tail extent moments in the S1 and S2 were 5.20 and 9.90 respectively and the moment was 19.89 in the S3. Statistical ANOVA in the tail moments showed a significant difference (n=75, p<0.05) between S1 and S3. Also, the proportions of DNA in the tail were 14.47, 23.64, and $30.04{\mu}m$ in the upstream (control site), midstream, downstream sites, respectively. Our results in the downstream were accord with previous studies of individual-level, population-level, and community-level in Gap Stream. Our results suggest that the comet assay may be used as an important tool for diagnosing ecological health of aquatic ecosystems in the level of DNA.

Evaluation of DNA Damage Induced by Mercury Chloride (II) and Ionizing Radiation in the Earthworm (염화수은(II)과 이온화 방사선 처리에 따른 토양 내 환형동물의 DNA 손상 측정)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.4
    • /
    • pp.212-217
    • /
    • 2010
  • Soil pollution by heavy metals has become a significant environmental concern due to a variety of human activities. Specially toxicity caused by excessive mercury exposure is now being recognized as a widespread environmental problem and is continuing to attract a great deal of public concerns. The earthworms are very important animals that aerate the soil with their burrowing action and enrich the soil by decomposing organic matters. Especially the earthworm Eisenia fetida is routinely used in ecotoxicological studies. The levels of DNA damage in earthworms treated with HgCl2 and ionizing radiation were investigated in this study. Genotoxic effects were evaluated in the earthworm's coelomocytes using the comet assay (Single Cell Gel Electrophoresis; SCGE). The results showed that the mercury chloride and radiation were responsible for the genotoxic effects on earthworms. The level of DNA damage significantly increased after the treatment of mercury chloride combined with ionizing radiation. The combined treatment of $HgCl_2$ and ionizing radiation had a greater genotoxicity. This study is amenable to further study such as enzyme activation assay.

Inhibitory Effect of Hot-Water Extract of Paeonia japonica on Oxidative Stress and Identification of Its Active Components (백작약 열수추출물의 산화적 스트레스 억제효과 및 유효성분 동정)

  • Jeong, Ill-Yun;Lee, Joo-Sang;Oh, Heon;Jung, U-Hee;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.739-744
    • /
    • 2003
  • This study was carried out to investigate the antioxidative activity and to identify the active components of hot-water extract of Paeoniajaponica (PJ), which was a main ingredient of a herb mixture preparation recently established as a potent candidate of radioprotector in our laboratory. The water extract was fractionated with CHCl$_3$, EtOAc and n-BuOH. The extract and its fractions showed very low activity in hydroxyl radical scavenging test. In lipid peroxidation test, the extract, EtOAc and water fractions showed moderate inhibition with the ratio above 50%. In DPPH radical scavenging test, the extract, EtOAc and water fraction showed high activity with the ratio above 80%, especially. EtOAc fraction scavenged the radicals as much as synthetic antioxidant (BHA), even at low concentration. It is suggested that mai or partition for antioxidative activity of Paeonia japonica was EtOAc fraction. Subsequently, two active compounds (PJE021-1 and JE024-1) from EtOAc fraction were isolated by using MCI gel and silica gel column chromatography The two compounds inhibited remarkedly the $H_2O$$_2$-induced DNA damage in human peripheral blood lymphocytes, measured by single-cell gel electrophoresis (SCGE). PJE021-1 protected the cells to almost negative control level, dose-dependently. PJE024-1 exhibited a potent inhibition with the ratio of 71% at even low concentration (0.5 $\mu\textrm{g}$/$m\ell$). Finally, their chemical structures were identified as gallic acid (PJE021-1) and (+)-catechin (PJE024-1), respectively, on the basis of the speculation of spectral and physical data.

Influence of Mercury on the Repair of Ionizing Radiation-induced DNA Damage in Coelomocytes of Eisenia fetida (이온화 방사선에 의해 손상된 Eisenia fetida 체강세포의 DNA 수복에 수은이 미치는 영향)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • Mercury known as quicksilver, is the most common cause of heavy metal toxicity. Toxicity caused by excessive mercury exposure is now being recognized as a widespread environmental problem and is continuing to attract a great deal of public concerns. The mercury genotoxicity could be its effect on DNA repair mechanisms, which constitute the defense system designated to protect genome integrity. The objective of this study is to confirm that mercuric chloride inhibits the repair of gamma ray-induced DNA damage. The earthworm of Eisenia fetida was chosen for this study because it is an internationally accepted model species for toxicity testing with a cosmopolitan distribution. Experiments were done to identify the levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida irradiated with 20 Gy gamma rays alone or with gamma rays after 40 mg $kg^{-1}$ $HgCl_2$ treatment by means of the single cell gel electrophoresis assay. The Olive tail moments were measured during 0~96 hours after irradiation. The repair time in the animals treated with the combination of $HgCl_2$ and ionizing radiation was nearly five times longer than that in the animals treated with ionizing radiation alone. Also, E. fetida exposed to mercury showed a statistically lower repair efficiency of gamma ray-induced DNA damage. The results suggest that the mercury could even have deleterious effects on the DNA repair system. Influence of mercury on the DNA repair mechanisms has been confirmed by this study.

Protective Effect of Flavonoids on Lymphocyte DNA Damage Using Comet Assay (Comet Assay를 이용한 Flavonoids와 항산화 비타민의 인체임파구 세포 DNA 손상 보호 효과)

  • 박유경;전은재;강명희
    • Journal of Nutrition and Health
    • /
    • v.36 no.2
    • /
    • pp.125-132
    • /
    • 2003
  • The present study was attempted to investigate and compare the antioxidant potency of several well-know flavonoids, antioxidant vitamin and commercially available popular beverages. The antioxidant potency was assessed by the effect on reducing oxidative DNA damage of human lymphocytes. Cellular oxidative DNA damage was measured by SCGE (single-cell gel electrophoresis), also known as comet assay. Lymphocytes were pre-treated for 30 minutes with wide ranges of doses of apigenin, kaempferol, luteolin, myricetin, rutin, quercetin, $\alpha$-tocopherol (10,25,50,100,200,500,1000 $\mu$M) ,green tea extract or grape juice (10,50,100,250,500,1000 $\mu$g/mL) followed by a $H_2O$$_2$(100 $\mu$M) treatment for 5 min as an oxidative stimulus. The physiological function of each antioxidant substance on oxidative DNA damage was analyzed as tail moment (tail length $\times$ percentage migrated DNA in tail) and expressed as relative DNA damage score after adjusting by the level of control treatment. Cells treated with $H_2O$$_2$alone (positive control) had an extensive DNA damage compared with cells treated with phosphate buffered saline (PBS, negative control) or pre-treated with all the tested samples. Of all the six flavonoids, quercetin was the most potent antioxidant showing the lowest $ED_{50}$/ of 8.5 $\mu$g/mL (concentration to produce 50% protection of relative DNA damage). The antoxidant potency of individual flavonoids were ranked as follows in a decreasing order; luteolin (18.4 $\mu$g/mL), myricetin (19.0 $\mu$g/mL) , rutin (22.2 $\mu$g/mL) , apigenin (24,3 $\mu$g/mL) , kaempferol (25.5 $\mu$g/mL). The protective effect of $\alpha$-tocopherol was substantially lower (highest $ED_{50}$value of 55.0 $\mu$g/mL) than all the other flavonoids, while the protective effect was highest in green tea and grape juice with low ED5O value of 7.6 and 5.3, respectively. These results suggest that flavonoids, especially quercetin, and natural compounds from food product, green tea and grape juice, produced powerful anti-oxidative activities, even stronger than $\alpha$-tocopherol. Taken together, supplementation of antioxidants to lymphocytes followed by oxidative stimulus inhibited damage to cellular DNA, supporting a protective effect against oxidative damage induced by reactive oxygen species.