Influence of Mercury on the Repair of Ionizing Radiation-induced DNA Damage in Coelomocytes of Eisenia fetida

이온화 방사선에 의해 손상된 Eisenia fetida 체강세포의 DNA 수복에 수은이 미치는 영향

  • Ryu, Tae-Ho (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Nili, Mohammad (Dawnesh Radiation Research Institute) ;
  • An, Kwang-Guk (College of Bioscience and Biotechnology, Chungnam National University) ;
  • Kim, Jin-Kyu (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute)
  • 류태호 (한국원자력연구원 방사선과학연구소) ;
  • 모하마드 닐리 (스페인 도네쉬방사선연구소) ;
  • 안광국 (충남대학교 생명시스템과학대학) ;
  • 김진규 (한국원자력연구원 방사선과학연구소)
  • Received : 2011.08.05
  • Accepted : 2011.08.15
  • Published : 2011.08.31

Abstract

Mercury known as quicksilver, is the most common cause of heavy metal toxicity. Toxicity caused by excessive mercury exposure is now being recognized as a widespread environmental problem and is continuing to attract a great deal of public concerns. The mercury genotoxicity could be its effect on DNA repair mechanisms, which constitute the defense system designated to protect genome integrity. The objective of this study is to confirm that mercuric chloride inhibits the repair of gamma ray-induced DNA damage. The earthworm of Eisenia fetida was chosen for this study because it is an internationally accepted model species for toxicity testing with a cosmopolitan distribution. Experiments were done to identify the levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida irradiated with 20 Gy gamma rays alone or with gamma rays after 40 mg $kg^{-1}$ $HgCl_2$ treatment by means of the single cell gel electrophoresis assay. The Olive tail moments were measured during 0~96 hours after irradiation. The repair time in the animals treated with the combination of $HgCl_2$ and ionizing radiation was nearly five times longer than that in the animals treated with ionizing radiation alone. Also, E. fetida exposed to mercury showed a statistically lower repair efficiency of gamma ray-induced DNA damage. The results suggest that the mercury could even have deleterious effects on the DNA repair system. Influence of mercury on the DNA repair mechanisms has been confirmed by this study.

수은이 DNA 수복에 미치는 영향을 알아보기 위해 E. fetida를 염화수은(II)과 이온화 방사선에 순차적으로 노출시킨 후, 단세포 겔 전기영동 기법을 이용하여 DNA의 손상 수준과 방사선 조사 후 시간 경과에 따른 수복 양상을 관찰하였다. 염화수은(II)의 농도를 40 mg $kg^{-1}$으로 하여 48시간 동안 in vivo 노출 시험을 수행한 뒤 20Gy의 감마선을 조사한 결과, 시간이 지날수록 대체로 DNA 손상의 수준이 감소했다. 이온화 방사선에 의해 손상된 DNA가 완전히 수복되기 위해 요구되는 시간을 비교해 보면, 수은과 감마선에 함께 노출된 E. fetida는 방사선 조사 후 약 37시간, 감마선만 조사한 실험군은 약 2.35시간이 지나고 난 뒤 손상된 DNA의 대부분이 수복되는 것을 볼 수 있었다. 한편 E. fetida에 20 Gy의 감마선을 조사하면 방사선 조사가 끝나고 약 45분, 수은 처리 후 방사선을 조사하면 약 1시간 12분 정도가 경과한 시점에서 손상되었던 DNA의 절반이 수복되는 것을 확인할 수 있었다. 또한 DNA 수복 속도가 빠른 구간을 도식화하여 그 기울기를 계산한 결과, 수은에 노출된 실험군의 DNA 수복률은 수은에 노출되지 않은 실험군보다 약 5배 정도 수복 속도가 느리다고 판단할 수 있었다. 손상된 DNA가 천천히 수복되는 구간을 수식으로 표현해 DNA의 미수복분율을 산출하면 방사선 단독처리군과 수은 및 방사선의 복합처리군의 미수복분율은 각각 0.4910과 0.9470로 나타난다. 미수복분율 값의 차는 수은에 의해 DNA의 정상적인 수복이 방해되었음을 의미한다.

Keywords

References

  1. 류태호, 모하마드닐리, 안광국, 김진규. 2010. 염화수은(II)과 이온화 방사선 처리에 따른 토양 내 환형동물의 DNA손상 측정. 환경생물. 28:212-217.
  2. 류태호, 모하마드닐리, 안광국, 김진규. 2011. 방사선과 수은에 의해 유도된 Eisenia fetida 체강세포의 DNA 손상 및 수복 평가. 환경생물. 29:68-73.
  3. 한 민, 현경만, 모하마드닐리, 황인영, 김진규. 2009. 이온화 방사선 및 염화수은 처리에 따른 어류 간암세포의 생존능 평가. 환경생물. 27:140-145.
  4. Asmuss M, LHF Mullenders and A Hartwig. 2000. Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxicol. Lett. 112-113:227-231.
  5. Cantoni O and M Costa. 1983. Correlations of DNA strand breaks and their repair with cell survival following acute exposure to mercury (II) and X-rays. Mol. Pharmacol. 24:84-89.
  6. Cebulska-Wasilewska A. 2003. Response to challenging dose of X-rays as a predictive assay for molecular epidemiology. Mutat. Res. 544:289-297. https://doi.org/10.1016/j.mrrev.2003.07.003
  7. Cebulska-Wasilewska A, A Panek, Z Zabinski and P Moszczynski. 2005. Influence of mercury vapors on lymphocytes in vivo and on their susceptibility to UV-C and X-rays, and repair efficiency in vitro. Med. Pr. 56:303-310.
  8. Chen H, NC Giri, R Zhang, K Yamane, Y Zhang, M Maroney and M Costa. 2009. Nickel ions inhibit histione demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J. Biol. Chem. 285:7374-7383.
  9. Clarkson TW. 2002. The three modern faces of mercury. Environ. Health Perspect. 110:11-23.
  10. Crespo-Lopez ME, GL Macedo, SID Pereira, GPF Arrifano, DLW Picanco-Diniz, JLM do nascimento and AM Herculano. 2009. Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacol. Res. 60:212-220. https://doi.org/10.1016/j.phrs.2009.02.011
  11. Diogene J, M Dufour, GG Poirier and D Nadeau. 1997. Extrusion of earthworm coelomocytes: comparison of the cell populations recovered from the species Lumbricus terrestris, Eisenia fetida and Octolasion tyrtaeum. Lab. Animal. 31:326-336. https://doi.org/10.1258/002367797780596068
  12. Eyambe GS, AJ Goven, LC Fitzpatrick, BJ Venables and EL Cooper. 1991. A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies. Lab. Animal. 25:61-67. https://doi.org/10.1258/002367791780808095
  13. Goyer RA. 1991. Toxic effects of metals. pp.623-680. In Casarett and Doull's toxicology: The basic science of poisons. 4th ed. (Amdur MO, J Doull and CD Klaassen, eds.). Pergamon Press, New York.
  14. Koppen G, LM Toncelli, L Triest and L Vershaeve. 1999. The comet assay: a tool to study alteration of DNA intergrity in developing plant leaves. Mech. Aging Dev. 110:13-24. https://doi.org/10.1016/S0047-6374(99)00038-X
  15. Oauah PO. 2000. Mercury poisoning. Curr. Probl. Pediatr. 30:91-99.
  16. Rydberg B and KJ Johansom. 1978. Estimation of DNA strand breaks in single mammalian cells. pp.465-468. In DNA Repair Mechanisms. (Hanawalt PC, EC Friedberg and CF Fox eds.). Academic Press, New York.
  17. Sellappa S, S Prathyumnan, KS Keyan, S Joseph, BSG Vasudevan and K Sasikala. 2010. Evaluation of DNA damage induction and repair inhibition in welders exposed to hexavalent chromium. Asian Pac. J. Cancer Prev. 11:95-100.
  18. Singh NP, MT McCoy, RR Tice and EL Schneider. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175:184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  19. Stohs SJ and D Bagchi. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radical Bio. Med. 18:321-336. https://doi.org/10.1016/0891-5849(94)00159-H
  20. Yee S and BH Choi. 1996. Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology 17:17-26.