• Title/Summary/Keyword: Single Mode

Search Result 2,510, Processing Time 0.03 seconds

Viewing angle controllable in-plane switching liquid crystal display using one panel

  • Kim, Jin-Ho;Lim, Young-Jin;Her, Jung-Hwa;Srivastava, Anoop Kumar;Park, Kyoung-Ho;Lee, Joun-Ho;Kim, Byeong-Koo;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.629-632
    • /
    • 2009
  • We have proposed a novel viewing angle controllable display of in-plane switching (IPS) mode with single panel. One pixel of this device is divided to two regions, in which main pixel shows image and sub pixel for viewing angle control. In initial state, the liquid crystal of sub pixel is homogeneous aligned on substrate for wide viewing angle mode. On the other hand, after applying voltage, the liquid crystal of sub pixel tilts up for narrow viewing angle mode. The proposed device has advantage for the function for simple manufacturing process and good viewing angle control with single panel.

  • PDF

A Study on the Improvement of Technical Regulation in the Customer Cabling System Using Optical fiber for FTTH (FTTH 도입을 위한 광선로설비 기술기준 개선 연구)

  • Choi, Mun-Hwan;Cho, Pyoung-Dong;Kang, Young-Heung;Yang, Jun-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7C
    • /
    • pp.529-533
    • /
    • 2008
  • In this paper, we have analysed the channel loss characteristics of optical fiber due to the changing of radius of curvatures and the number of cable banding, and due to the connection between different modes of fiber to derive revisions of technical regulation for FTTH. The results of test show that all conditions are satisfied the criteria(allowable radius of curvatures, 30mm) with the exception of conditions of 10mm radius in single mode case and show that source of light in multi mode fiber can't be delivered to single mode fiber. henceforth, we should study more intensively on the standards of connection between cables in the different modes.

Fabrication of optical waveguide on LiNbO$_3$substrate by proton exchange (LiNbO$_3$기판 위에서의 양자교환에 의한 공도파로 제작)

  • 정상철;심광보;정용선;신재혁;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.297-301
    • /
    • 2000
  • Planar optical waveguides which have a higher refractive index than that of substrate were fabricated by proton exchange between $Li^+$ and $H^+$. Benzoic acid was used as proton source and process was carried out under the various reaction time and temperature. The depth of waveguide layer and the generated mode number were investigated by standard prism coupler. The cut-off depth for the fabrication of single mode optical waveguides was obtained by the function which was expressed on refractive index profile. Finally the experimental conditions for cut-of depth of single mode could be confirmed. Channel waveguides were manufactured from these confirmed conditions and the effective confinement of the induced light into waveguides was observed.

  • PDF

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.

DETAILED EXAMINATION OF INVERSE-ANALYSIS PARAMETERS FOR PARTICLE TRAPPING IN SINGLE CHANNEL DIESEL PARTICULATE FILTER

  • Jung, S.C.;Park, J.S.;Yoon, W.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.165-177
    • /
    • 2007
  • Predictions of diesel particulate filtration are typically made by modeling of a particle collection, and providing particle trapping levels in terms of a pressure drop. In the present study, a series of single channel diesel particulate filter (DPF) experiments are conducted, the pressure traces are inversely analyzed and essential filtration parameters are deducted for model closure. A DPF filtration model is formulated with a non-linear description of soot cake regression. Dependence of soot cake porosity, packing density, permeability, and soot density in filter walls on convective-diffusive particle transportation is examined. Sensitivity analysis was conducted on model parameters, relevant to the mode of transition. Soot cake porosity and soot packing density show low degrees of dispersion with respect to the Peclet number and have asymptotes at 0.97 and $70\;kg/m^3$, respectively, at high Peclet number. Soot density in the filter wall, which is inversely proportional to filter wall Peclet number, controls the filtration mode transition but exerts no influence on termination pressure drop. The percolation constant greatly alters the extent of pressure drop, but is insensitive to volumetric flow rate or temperature of exhaust gas at fixed operation mode.

Unified Controller for Solar Array Simulator (동작지점 투영기법을 이용한 태양광패널 모사장치의 통합 제어기법)

  • Wellawatta, Thusitha;Seo, Young-Tae;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.118-126
    • /
    • 2020
  • A solar array simulator is a special power supply that regulates the output voltage and current to simulate the characteristics of a photovoltaic panel. The operating point of the panel is difficult to control with a single controller because of the non-linearity of the output curve, which is determined by the amount of irradiation, temperature, and panel material. In the conventional method, the output curve is divided into sections through the current and the voltage mode controls. It reduces the overall performance of the system due to the interchanging control mode. By using the single mode controller, the noise interference of the measured value and the stability of the control around the maximum power point were demonstrated. To solve these issues, this study proposes a new unified controller. The stability of the controller was analyzed along with operating principles, and performance improvement was experimentally verified.

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems (단상 계통연계 인버터의 SRF 전력제어 방법)

  • Park, Han-Eol;Kim, Eun-Seok;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • It is well known that distributed generation(DG) system using renewable energy is an alternative to solve the problems which result from the exhaustion of fossil fuel and the environmental pollution. A PWM inverter is required for a power flow control in the DG systems. This paper proposes a SRF power flow control method considering grid impedance in grid-connected single-phase inverter systems. The proposed SRF power flow control method can provide a voltage-reference for the single-phase inverter even without any grid impedance estimation so that the single-phase inverter system could operate in stand-alone mode and grid-connected mode based on the known nominal value of grid impedance. Also independent controls of active and reactive power are achieved by the proposed control method. The effectiveness and the validity of the proposed control method are demonstrated through simulations. The simulation results show that the proposed control method can control properly power flow in grid-connected single-phase inverter systems.

A Wideband Inductorless LNA for Inter-band and Intra-band Carrier Aggregation in LTE-Advanced and 5G

  • Gyaang, Raymond;Lee, Dong-Ho;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.917-924
    • /
    • 2019
  • This paper presents a wideband low noise amplifier (LNA) that is suitable for LTE-Advanced and 5G communication standards employing carrier aggregation (CA). The proposed LNA encompasses a common input stage and a dual output second stage with a buffer at each distinct output. This architecture is targeted to operate in both intra-band (contiguous and non-contiguous) and inter-band CA. In the proposed design, the input and second stages employ a gm enhancement with resistive feedback technique to achieve self-biasing, enhanced gain, wide bandwidth as well as reduced noise figure of the proposed LNA. An up/down power controller controls the single input single out (SISO) and single input multiple outputs (SIMO) modes of operation for inter-band and intra-band operations. The proposed LNA is designed with a 45nm CMOS technology. For SISO mode of operation, the LNA operates from 0.52GHz to 4.29GHz with a maximum power gain of 17.77dB, 2.88dB minimum noise figure and input (output) matching performance better than -10dB. For SIMO mode of operation, the proposed LNA operates from 0.52GHz to 4.44GHz with a maximum voltage gain of 18.30dB, a minimum noise figure of 2.82dB with equally good matching performance. An $IIP_3$ value of -6.7dBm is achieved in both SISO and SIMO operations. with a maximum current of 42mA consumed (LNA+buffer in SIMO operation) from a 1.2V supply.

Resource Allocation for Performance Optimization of Interleaved Mode in Airborne AESA Radar (항공기탑재 AESA 레이다의 동시운용모드 성능 최적화를 위한 자원 할당)

  • Yong-min Kim;Ji-eun Roh;Jin-Ju Won
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.540-545
    • /
    • 2023
  • AESA radar is able to instantaneously and adaptively position and control the beam, and this enables to have interleaved mode in modern airborne AESA radar which can maximize situational awareness capability. Interleaved mode provides two or more modes simultaneously, such as Air to Air mode and Sea Surface mode by time sharing technique. In this interleaved mode, performance degradation is inevitable, compared with single mode operation, and effective resource allocation is the key component for the success of interleaved mode. In this paper, we identified performance evaluation items for each mode to analyze interleaved mode performance and proposed effective resource allocation methodology to achieve graceful performance degradation of each mode, focusing on detection range. We also proposed beam scheduling techniques for interleaved mode.