• Title/Summary/Keyword: Single Learner Model

Search Result 11, Processing Time 0.021 seconds

A Causal Recommendation Model based on the Counterfactual Data Augmentation: Case of CausRec (반사실적 데이터 증강에 기반한 인과추천모델: CausRec사례)

  • Hee Seok Song
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.4
    • /
    • pp.29-38
    • /
    • 2023
  • A single-learner model which integrates the user's positive and negative perceptions is proposed by augmenting counterfactual data to the interaction data between users and items, which are mainly used in collaborative filtering in this study. The proposed CausRec showed superior performance compared to the existing NCF model in terms of F1 value and AUC in experiments using three published datasets: MovieLens 100K, Amazon Gift Card, and Amazon Magazine. Compared to the existing NCF model, the F1 and AUC values of CausRec showed 1.2% and 2.6% performance improvement in MovieLens 100K data, and 2.2% and 10% improvement in Amazon Gift Card data, respectively. In particular, in experiments using Amazon Magazine data, F1 and AUC values were improved by 11.7% and 21.9%, respectively, showing a significant performance improvement effect. The performance of CausRec is improved because both positive and negative perceptions of the item were reflected in the recommendation at the same time. It is judged that the proposed method was able to improve the performance of the collaborative filtering because it can simultaneously alleviate the sparsity and imbalance problems of the interaction data.

Developing a Teaching-Learning Model for Flipped Learning for Institutes of Technology and a Case of Operation of a Subject (공과대학의 Flipped Learning 교수학습 모형 개발 및 교과운영사례)

  • Choi, Jeong-bin;Kim, Eun-Gyung
    • Journal of Engineering Education Research
    • /
    • v.18 no.2
    • /
    • pp.77-88
    • /
    • 2015
  • Recently, there has been an increasing interest in 'Flipped Learning,' an IT-based learner-centered teaching-learning method corresponding to meet the paradigm of the future education. For smooth Flipped Learning, there are three steps in total: a pre-class should precede; then, in the structure of classes in the classroom, in-class learning among peer learners should be done; and lastly, the operation of a post-class should be done. For successful Flipped Learning, class elements in each step should be designed with a time difference, interconnected so as to achieve a single educational objective. However, it was found that there was a limitation in that the teaching-learning model of the preceding Flipped Learning consisted of the order of analysis, design, development, implementation and evaluation as general procedures, so it would not sufficiently consider the situations of Flipped Learning only. On this background, this thesis proposes a differentiated Flipped Learning model for mastery learning in a subject of an institute of technology as a model of systematic instructional design and presents a case of a class applied to an actual subject of computer engineering.

Using Cognitive Diagnosis Theory to Analyze the Test Results of Mathematics (수학 평가 결과의 분석을 위한 인지 진단 이론의 활용)

  • Kim, Sun-Hee;Kim, Soo-Jin;Song, Mi-Young
    • School Mathematics
    • /
    • v.10 no.2
    • /
    • pp.259-277
    • /
    • 2008
  • Conventional assessments only provide a single summary score that indicates the overall performance level or achievement level of a student in a single learning area. For assessments to be more effective, test should provide useful diagnostic information in addition to single overall scores. Cognitive diagnosis modeling provides useful information by estimating individual knowledge states by assessing whether an examinee has mastered specific attributes measured by the test(Embretson, 1990; DiBello, Stout, & Rousses, 1995; Tatsuoka, 1995). Attributes are skills or cognitive processes that are required to perform correctly on a particular item. By the results of this study, students, parents, and teachers would be able to see where a student stands with respect to mastering the attributes. Such information could be used to guide the learner and teacher toward areas requiring more study. By being able to assess where they stand in regard to the attributes that compose an item, students can plan a more effective learning path to be desired proficiency levels. It would be very helpful to the examinee if score reports can provide the scale scores as well as the skill profiles. While the scale scores are believed to provide students' math ability by reporting only one score point, the skill profiles can offer a skill level of strong, weak or mixed for each student for each skill.

  • PDF

A Comparative Study of Second Language Acquisition Models: Focusing on Vowel Acquisition by Chinese Learners of Korean (중국인 학습자의 한국어 모음 습득에 대한 제2언어 습득 모델 비교 연구)

  • Kim, Jooyeon
    • Phonetics and Speech Sciences
    • /
    • v.6 no.4
    • /
    • pp.27-36
    • /
    • 2014
  • This study provided longitudinal examination of the Chinese learners' acquisition of Korean vowels. Specifically, I examined the Chinese learners' Korean monophthongs /i, e, ɨ, ${\Lambda}$, a, u, o/ that were created at the time of 1 month and 12 months, tried to verify empirically how they learn by dealing with their mother tongue, and Korean vowels through dealing with pattern of the Perceptual Assimilation Model (henceforth PAM) of Best (Best, 1993; 1994; Best & Tyler, 2007) and the Speech Learning Model (henceforth SLM) of Flege (Flege, 1987; Bohn & Flege, 1992, Flege, 1995). As a result, most of the present results are shown to be similarly explained by the PAM and SLM, and the only discrepancy between these two models is found in the 'similar' category of sounds between the learners' native language and the target language. Specifically, the acquisition pattern of /u/ and /o/ in Korean is well accounted for the PAM, but not in the SLM. The SLM did not explain why the Chinese learners had difficulty in acquiring the Korean vowel /u/, because according to the SLM, the vowel /u/ in Chinese (the native language) is matched either to the vowel /u/ or /o/ in Korean (the target language). Namely, there is only a one-to-one matching relationship between the native language and the target language. In contrast, the Chinese learners' difficulty for the Korean vowel /u/ is well accounted for in the PAM in that the Chinese vowel /u/ is matched to the vowel pair /o, u/ in Korean, not the single vowel, /o/ or /u/.

AutoFe-Sel: A Meta-learning based methodology for Recommending Feature Subset Selection Algorithms

  • Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1773-1793
    • /
    • 2023
  • Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.

A Combination of Signature-based IDS and Machine Learning-based IDS using Alpha-cut and Beta pick (Alpha-cut과 Beta-pick를 이용한 시그너쳐 기반 침입탐지 시스템과 기계학습 기반 침입탐지 시스템의 결합)

  • Weon, Ill-Young;Song, Doo-Heon;Lee, Chang-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.609-616
    • /
    • 2005
  • Signature-based Intrusion Detection has many false positive and many difficulties to detect new and changed attacks. Alpha-cut is introduced which reduces false positive with a combination of signature-based IDS and machine learning-based IDS in prior paper [1]. This research is a study of a succession of Alpha-cut, and we introduce Beta-rick in which attacks can be detected but cannot be detected in single signature-based detection. Alpha-cut is a way of increasing detection accuracy for the signature based IDS, Beta-pick is a way which decreases the case of treating attack as normality. For Alpha-cut and Beta-pick we use XIBL as a learning algorithm and also show the difference of result of Sd.5. To describe the value of proposed method we apply Alpha-cut and Beta-pick to signature-based IDS and show the decrease of false alarms.

An Analysis of the Influence of Block-type Programming Language-Based Artificial Intelligence Education on the Learner's Attitude in Artificial Intelligence (블록형 프로그래밍 언어 기반 인공지능 교육이 학습자의 인공지능 기술 태도에 미치는 영향 분석)

  • Lee, Youngho
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.2
    • /
    • pp.189-196
    • /
    • 2019
  • Artificial intelligence has begun to be used in various parts of our lives, and recently its sphere has been expanding. However, students tend to find it difficult to recognize artificial intelligence technology because education on artificial intelligence is not being conducted on elementary school students. This paper examined the teaching programming language and artificial intelligence teaching methods, and looked at the changes in students' attitudes toward artificial intelligence technology by conducting education on artificial intelligence. To this end, education on block-type programming language-based artificial intelligence technology was provided to students' level. And we looked at students' attitudes toward artificial intelligence technology through a single group pre-postmortem. As a result, it brought about significant improvements in interest in artificial intelligence, possible access to artificial intelligence technology and the need for education on artificial intelligence technology in schools.

The Effects of Learning Transfer on Perceived Usefulness and Perceived Ease of Use in Enterprise e-Learning - Focused on Mediating Effects of Self-Efficacy and Work Environment - (지각된 유용성과 사용용이성이 기업 이러닝 교육의 학습전이에 미치는 영향에 관한 연구 -자기효능감과 업무환경의 매개효과를 중심으로-)

  • Park, Dae-Bum;Gu, Ja-Won
    • Management & Information Systems Review
    • /
    • v.37 no.3
    • /
    • pp.1-25
    • /
    • 2018
  • This research performed the empirical test for the effects of learning transfer on perceived usefulness, perceived ease of use, self-efficacy and work environment using 390 employees who have experienced e-learning in domestic and foreign companies. Analyzed the mediating effects of self-efficacy and work environment in addition to direct effect of each factor on learning transfer. The results showed that perceived usefulness and perceived ease-of-use of e-learning learner had a positive(+) effect on self-efficacy and a positive influence on supervisor and peer support and organizational climate. Self-efficacy showed a positive effect on learning transfer, and supervisor support, peer support and organizational climate had a positive influence on learning transfer as well. Perceived usefulness also had a positive effect on learning transfer. However, perceived ease-of-use had no significant effect on learning transfer. As a result of the mediating effect analysis, self-efficacy and work environment were analyzed to have mediating effects between perceived usefulness, perceived ease of use, and learning transfer. The implications of this study are as follows. First, this study designed a new research model that reflects factors influencing the effect of learning transfer on acceptance of e-learning that is common in corporate education. It has derived a research model of perceived usefulness and perceived ease-of-use, which were used as mediating variables for external characteristics factors, as independent variables, using self-efficacy and work environment as mediating variables, which were studied as external factors. Second, most of the studies on technology acceptance model and learning transfer are conducted in a single country. The reliability was enhanced by testing the study models using different samples from 26 countries. Third, perceived usefulness and ease-of-use in existing studies have been considered as key determinants of acceptance intention and learning transfer. This study explored the mediating effects of learner and environmental factors on the accepted information technology and strengthened and supplemented the path of learning transfer of perceived usefulness and ease-of-use. In addition, based on the sample analysis of various countries used in this study, it is expected that future international comparative studies will be possible.

Out-of-School Educatin for the Gifted and Talented around the World

  • Freeman, Joan
    • Journal of Gifted/Talented Education
    • /
    • v.14 no.3
    • /
    • pp.41-52
    • /
    • 2004
  • No educational provision for the gifted and talented works in a cultural vacuum, and this is as true for out-of-school activities as for what happens in school itself. There is evidence that excellence in children's achievements can come from widely differing special provision or from no special provision at all. Cultural influences affect attitudes as to who might be gifted and talented and what might be done for them. Whatever the size and influence of special centres anywhere, there is always overlap between in-school and out-of-school activities. For all styles of provision, cooperation between the two is a vital aspect of success. The major cultural dichotomy in this field is between the perception, usually found in the Far East that 'most children have gifted potential' and the largely Western view that 'few children have gifted potential'. It is safe to say that children who are selected for aptitude and ability, and who are keen to learn, will get more from special enrichment than those who of equal potential who have not had that experience. But this does not necessarily show the provision as the best possible method for enhancing gifts and talents. In fact, I do not know of a single scientific investigation, either cross-culturally or within one country, which compares any aspect of an out-of-school programme with another. As a result it is hard to say what type of provision would be most appropriate and effective in any given situation. Outcomes are also dependent on the enthusiasm, organisation and money put into any scheme - as well as the way youngsters are chosen for it. Some of the largest and most influential out-of-school American institutions were founded on the psychological understanding of human abilities that was current in the 1920s. These early influences of seeking an IQ cut-off point (or equivalent) to identify the gifted still affect their practice. in addition, the big American Talent Searches so often select youngsters for summer-schools not only by their high-level achievements, but also by their parent's ability to pay the sometimes high fees. Opinions about the identification of the brightest children and consequential educational practice underlie all provision for their education, whether in or outside school hours. Because of cross-cultural differences, it would not seem wise to copy any action directly from one culture to another without recognising these influences and possibly modifying the model. The growing trend around the world is to offer high-level opportunities to as many youngsters as possible, so that no keen learner is turned away without even a change of sampling them.

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.