• 제목/요약/키워드: Simulation Optimization

검색결과 3,087건 처리시간 0.029초

시뮬레이션 최적화 기법과 절삭공정에의 응용 (Simulation Optimization Methods with Application to Machining Process)

  • 양병희
    • 한국시뮬레이션학회논문지
    • /
    • 제3권2호
    • /
    • pp.57-67
    • /
    • 1994
  • For many practical and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. In this paper, with discussion of simulation optimization techniques, a case study in machining process for application of simulation optimization is presented. Most of optimization techniques can be classified as single-or multiple-response techniques. The optimization of single-response category, these strategies are gradient based search methods, stochastic approximate method, response surface method, and heuristic search methods. In the multiple-response category, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphical method, direct search method, constrained optimization, unconstrained optimization, and goal programming methods. The choice of the procedure to employ in simulation optimization depends on the analyst and the problem to be solved.

  • PDF

Recent Reseach in Simulation Optimization

  • 이영해
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1994년도 추계학술발표회 및 정기총회
    • /
    • pp.1-2
    • /
    • 1994
  • With the prevalence of computers in modern organizations, simulation is receiving more atention as an effectvie decision -making tool. Simualtion is a computer-based numerical technique which uses mathmatical and logical models to approximate the behaviror of a real-world system. However, iptimization of synamic stochastic systems often defy analytical and algorithmic soluions. Although a simulation approach is often free fo the liminting assumption s of mathematical modeling, cost and time consiceration s make simulation the henayst's last resort. Therefore, whenever possible, analytical and algorithmica solutions are favored over simulation. This paper discussed the issues and procedrues for using simulation as a tool for optimization of stochastic complex systems that are dmodeled by computer simulation . Its emphasis is mostly on issues that are speicific to simulation optimization instead of consentrating on the general optimizationand mathematical programming techniques . A simulation optimization problem is an optimization problem where the objective function. constraints, or both are response that can only be evauated by computer simulation. As such, these functions are only implicit functions of decision parameters of the system, and often stochastic in nature as well. Most of optimization techniqes can be classified as single or multiple-resoneses techniques . The optimization of single response functins has been researched extensively and consists of many techniques. In the single response category, these strategies are gradient based search techniques, stochastic approximate techniques, response surface techniques, and heuristic search techniques. In the multiple response categroy, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphica techniqes, direct search techniques, constrained optimization techniques, unconstrained optimization techniques, and goal programming techniques. The choice of theprocedreu to employ in simulation optimization depends on the analyst and the problem to be solved. For many practival and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computersimulation is one of the most effective means of studying such complex systems. In this paper, after discussion of simulation optmization techniques, the applications of above techniques will be presented in the modeling process of many flexible manufacturing systems.

  • PDF

Reverse-Simulation 기법에 의한 다수 평가 함수를 가진 시스템의 최적화

  • 박경종
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1997년도 춘계 학술대회 발표집
    • /
    • pp.3-7
    • /
    • 1997
  • Simulation is commonly used to find the best values of decision variables for problems which defy analytical solutions. "Simulation Optimization" technique is used to optimize the expressed in analytical of mathematical models. In this research, we will study Reverse-Simulation optimization method which is quite different from current simulation optimization methods in literature. We will focus on the on-line determination of steady-state method which is very important issue in Reverse-Simulation optimization, and the construction of Reverse-Simulation algorithm with expert systems. Especially, in the case of multiple objectives because of the dependency of simulation model, all objectives do not satisfied simulataneously. In this paper, therefore, we process simulation optimization using objectives with priority to optimize multiple objectives under single run.ingle run.

  • PDF

시뮬레이션을 이용한 기어드모터 생산시스템 분석 (Analysis of Geared-Motor Manufacturing System Using Simulation)

  • 이영해
    • 한국시뮬레이션학회논문지
    • /
    • 제4권2호
    • /
    • pp.69-78
    • /
    • 1995
  • Simulation is generally used for the performance analysis and optimization of manufacturing systems. Therefore in this paper using the simulation techniques we obtain the information about the efficiency improvement and the optimization. Because simulation optimization method is subjected to the applied field and environment the general simulation optimization method does not exist. So we do not take the fixed optimization procedure but suggest the alternative one which is modified for applied field. This procedure supplies the optimized simulation information and helps improve the productivity of Geared-Motor assembly line. In order to optimize the manufacturing system we use two simulation languages, FACTOR/AIM and SLAMSYSTEM. The former gives the abundant output information. The latter gives the flexibility in simulation modeling.

  • PDF

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • 제10권6호
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

OPTIMIZATION OF THE PARAMETERS OF FEEDWATER CONTROL SYSTEM FOR OPR1000 NUCLEAR POWER PLANTS

  • Kim, Ung-Soo;Song, In-Ho;Sohn, Jong-Joo;Kim, Eun-Kee
    • Nuclear Engineering and Technology
    • /
    • 제42권4호
    • /
    • pp.460-467
    • /
    • 2010
  • In this study, the parameters of the feedwater control system (FWCS) of the OPR1000 type nuclear power plant (NPP) are optimized by response surface methodology (RSM) in order to acquire better level control performance from the FWCS. The objective of the optimization is to minimize the steam generator (SG) water level deviation from the reference level during transients. The objective functions for this optimization are relationships between the SG level deviation and the parameters of the FWCS. However, in this case of FWCS parameter optimization, the objective functions are not available in the form of analytic equations and the responses (the SG level at plant transients) to inputs (FWCS parameters) can be evaluated by computer simulations only. Classical optimization methods cannot be used because the objective function value cannot be calculated directely. Therefore, the simulation optimization methodology is used and the RSM is adopted as the simulation optimization algorithm. Objective functions are evaluated with several typical transients in NPPs using a system simulation computer code that has been utilized for the system performance analysis of actual NPPs. The results show that the optimized parameters have better SG level control performance. The degree of the SG level deviation from the reference level during transients is minimized and consequently the control performance of the FWCS is remarkably improved.

Simulation Optimization with Statistical Selection Method

  • Kim, Ju-Mi
    • Management Science and Financial Engineering
    • /
    • 제13권1호
    • /
    • pp.1-24
    • /
    • 2007
  • I propose new combined randomized methods for global optimization problems. These methods are based on the Nested Partitions(NP) method, a useful method for simulation optimization which guarantees global optimal solution but has several shortcomings. To overcome these shortcomings I hired various statistical selection methods and combined with NP method. I first explain the NP method and statistical selection method. And after that I present a detail description of proposed new combined methods and show the results of an application. As well as, I show how these combined methods can be considered in case of computing budget limit problem.

단일 실행의 빠른 근사해 기법과 반복 실행의 최적화 기법을 이용한 이산형 시스템의 시뮬레이션 연구 (Simulation Study of Discrete Event Systems using Fast Approximation Method of Single Run and Optimization Method of Multiple Run)

  • 박경종;이영해
    • 대한산업공학회지
    • /
    • 제32권1호
    • /
    • pp.9-17
    • /
    • 2006
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event simulation. The developed algorithm uses the configuration algorithm that can change decision variables and the stopping algorithm that can end simulation in order to satisfy the given objective value during single run. It tries to estimate an auto-regressive model for evaluating correctly the objective function obtained by a small amount of output data. We apply the proposed algorithm to M/M/s model, (s, S) inventory model, and known-function problem. The proposed algorithm can't always guarantee the optimal solution but the method gives an approximate feasible solution in a relatively short time period. We, therefore, show the proposed algorithm can be used as an initial feasible solution of existing optimization methods that need multiple simulation run to search an optimal solution.

Design Centering by Genetic Algorithm and Coarse Simulation

  • Jinkoo Lee
    • 한국CDE학회논문집
    • /
    • 제2권4호
    • /
    • pp.215-221
    • /
    • 1997
  • A new approach in solving design centering problem is presented. Like most stochastic optimization problems, optimal design centering problems have intrinsic difficulties in multivariate intergration of probability density functions. In order to avoid to avoid those difficulties, genetic algorithm and very coarse Monte Carlo simulation are used in this research. The new algorithm performs robustly while producing improved yields. This result implies that the combination of robust optimization methods and approximated simulation schemes would give promising ways for many stochastic optimizations which are inappropriate for mathematical programming.

  • PDF

PSO법을 응용한 확률적 시뮬레이션의 최적화 기법 연구 (A Study on Modified PSO for the Optimization of Stochastic Simulations)

  • 김선범;김정훈;이동훈
    • 한국시뮬레이션학회논문지
    • /
    • 제22권4호
    • /
    • pp.21-28
    • /
    • 2013
  • 일반적으로 최적화 문제에서 군사 시뮬레이션과 같이 결과가 확률적으로 나타나는 경우를 계산할 때에는 문제를 모델링 하여 일반적인 최적화 기법을 적용하는 것에 어려움이 있다. 본 논문에서는 이러한 군사 시뮬레이션의 특징을 반영하는 복잡한 반응표면을 가진 확률적 평가 함수를 정의하였다. 그리고 이러한 확률적 시뮬레이션에 대해 기존의 PSO법이 가진 약점을 보완하는 기법을 제안하였다. 제안한 기법을 이용해 평가 함수에 대한 최적화를 시행하였으며 최적화의 속도와 정확도에 영향을 미치는 계산 조건들의 상호작용을 분석하였다. 이를 통해 본 논문에서 제안한 확률적 시뮬레이션의 최적화 전략을 제시하였다.