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ABSTRACT

A new approach in solving design centering problem is presented. Like most stochastic op­
timization problems, optimal design centering problems have intrinsic difficulties in multivariate 
intergration of probability density functions. In order to avoid to avoid those difficulties, genetic 
algorithm and very coarse Monte Carlo simulation are used in this research. The new algorithm 
performs robustly while producing improved yields. This result implies that the combination of 
robust optimization methods and approximated simulation schemes would give promising ways 
for many stochastic optimizations which are inappropriate for mathematical programming.
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1. Introduction

In tolerance optimization research, two problem 
types are typically recognized: tolerance allotment 
problems and design centering problems. The al­
lotment of tolerances is closely tied to the overall 
quality and cost of a product. If the tolerances are 
too loose, the probability for an assembly to func­
tion acceptably (yield) will be low. On the other 
hand, if the tolerance is too tight, the manufac­
turing cost will become high. Thus tolerance al­
lotment becomes an optimization problem to de­
termine the optimal allotment of the tolerances und­
er the constraints of the function requirements and 
acceptance probability (spec yield). On the other 
hand, the precision of a given manufacturing pro­
cess to produce a dimension might be fixed by the 
environment in real manufacturing situations. In a 
cutting process, cutting precision is determined de­
pending on the sele아ion of a machine. In these si­
tuations a machinist adjusts the fixture setting by 
turning the knob or displacing the jig carefully. In 
terms of statistics, the machinist tries to put the 
center of the manufacturing distribution on the 

center of the reliable region by shifting the mean 
in order to maximize the yield. If there exist many 
dimensions and complicated constraints, determin­
ing the optimal centering position by the intuition 
becomes virtually impossible.

2. Problem Definition

2.1 Yield
The domain of dimensions is divided into a safe 

region and a failure region by inequalities. Those 
inequalities are the design functions (i.e. constra­
ints on the sum dimensions). The intersection of 
the safe region and the acceptable tolerance region 
is referred to as the reliable region. The reliable re­
gion depends on the standard deviation 巧 of each 
dimension since the tolerance region varies with q. 
An important concept c신led yield is computed as 
the probability of x being in reliable region. Let 跖 

and Xu represent the upper and lower limits of an 
individual dimension x, in an assembly. Then the 
yield is represented as

Y = ……，Xn) "(X1，…，Xn) dXi…dxn (1)

where 8(为，…，xn) is the multivariate normal pro-
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bability density function, and q(x1(…，xn) is a test 
function which checks whether a stochastically 
selected point is in the reliable region or in the in­
feasible region and is defined as follows"

q(x】, …, xn)=l, if Fi(xi, …, xQ그0 for all design 
functions

q(x15 xn)=0, otherwise

On the other hand, in more condensed form, the 
yield is

丫 =丄海怖何 ⑵

where Rr represents the reliable region.
As discussed earlier it is not easy to compute 

the yield Y from the set of tolerances (standard de­
viations) that constitute the multivariate normal pro­
bability density function 0(x) in equation (2) when 
the dimensionality becomes high.

Methods for calculating yield (i.e. multidimen­
sional integration) can usually be classified as eith­
er approximate methods or stochastic methods (e.g. 
Monte Carlo simulation'피). Several approaches 
have been tried to calculate the yield in tolerancing 
problems, including the Taylor series method, the 
Monte Carlo method料 and the approximation us­
ing a reliability inde^4\ Other approximate meth­
ods try to c시culate the yield by modifying the tol­
erance domain. In problems with low dimensions, 
original tolerance domains are approximated as 
simple regions such as spheres, cubics, or sim- 
plices"기. Other approaches for approximating dis­
crete distributions have been also tried[8,9].

2.2 Design centering problem
Let us consider the process to cut a large numb­

er of shafts as shown in Fig. 1. A lathe is used to 
cut the parts. In cutting procedures the worker sets 
the fixture and knows the precision of the machine. 
The machine can cut x】and x2 in 0.012 and 0.018 
tolerance 호ange each with 99.73% reliability (i.e.± 
3a range). If the dimensions are assumed to have 
normal distributions, the standard deviations for x】 

and x2 are 0.002 and 0.003 each. In order to in­
crease the in-spec' rate of the shafts, he might try 
to find the best fixture setting by intuition. Clearly

1.998 < xi <2.004

2.998 <X2< 3.005

4997 v xi +X2< 5.007
Fig. 1. Cutting a shaft.

the in-spec rate increases when the settings for 由 

and x2 are on 2.0005 and 3.001 respectively com­
pared to settings of 2 and 3. In terms of statistics, 
the machinist tries to put the center of the manufac­
turing distribution on the center of the reliable re­
gion by shifting the mean in order to maximize the 
yield. The yields by Monte Carlo simulation for 
each fixture setting are 56.08% for (2, 3) and 
62.96% for (2.0005, 3.001). If there exist many di­
mensions and complicated constraints, determining 
the optimal centering position by the intuition be­
comes virtually impossible.

Fig. 3 shows the change of the design center in­
creasing the yield.

The purpose of design centering can be stated 
as 'choose the center dimensions xc of the design 
variables so that yield Y be maximized for a given 
distribution(|>(x)". Since the standard deviations of

Fig. 2. Reliable region for the shaft.
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Fig. 3・ Design centering for the assembly.

the distributions are known and fixed in this prob­
lem, the design centering problem can be defined 
to have two phases, namely;

a) determining the feasible region Rr and a de­
sign center, and

b) evaluating the yield for the design center.
Therefore the optimization problem is defined as:

maximize Y(xc)=
"■ £上(寻，…，Xn)机％,…，Xn；Xc)dXi …，dXn (3)

where 8(X1,…，xn) is the multivariate normal pro­
bability density function, and q(xb …，xn) is a test 
function which checks whether a stochastically 
selected point is in the ^liable region or in the in­
feasible region and is defined as

q(xi, ■■■, xn)=l, if R(xi, …, X)그0 for all design 
functions

q(x” … , Xn) 느。, otherwise

or

maximize …]：^>(xv xn; xjdx] dxn (4)

subject to F(X], x2,…，xn; xc)>0 for all design func­
tions.

Therefore the variables x/s are stochastic, 
whereas xc is a vector of deterministic variables.

3. Basis of New Approach

3.1 Genetic algorithm
The basic structure processed by the genetic al- 

gorithm"이 is the string. The strings in artificial sys­
tems are analogous to chromosomes in biological 
systems. In natural systems, the chromosome (or set 
of chromosomes) is a prescription of the biological 

unit. In artificial systems, the string is a description 
of the parameter set. A chromosome is composed of 
genes which take on the number of values called al­
leles. A gene is also identified by its position on the 
chromosome called its locus. In most cases, a par­
ticular string is represented in its binary form.

Genetic algorithms generate one population of in­
dividuals at a time. As time proceeds, new gen­
erations are bom and older generations die away 
creating constantly changing populations. Genetic 
algorithms generate a sequence of string po­
pulations in the same manner. Therefore the po­
pulation is the body of knowledge containing a 
multitude of notions and ranking of those notions 
for task performance. Genetic algorithms can keep 
a diversity of population by adapting themselves.

The major steps of a genetic algorithm are gen­
erating a new population from a current generation 
according to established adaptation rules. An ori­
ginal genetic algorithm is composed of three steps:

1. Fitness proportionate reproduction
2. Cross-over
3. Mutation

3.2 Monte Ca게。simulation
The sampling method of the original Monte Car­

lo simulation technique for evaluating probability 
density functions is based on the rejection meth 
od[I1]. The rejection method generates N sample 
points Xi, xN from the probability density func­
tion 0(x). For a one dimensional probability den­
sity function (|)(x), calculate the maximum value 
8max・ Two random numbers,门 and % are gen­
erated uniformly between 0 and 1. Then the select­
ed dimension is mapped onto a real selection 
domain by

x = + l (5)

where u and I are the upper limit and the lower 
limit of the domain.

If

r2 < 礬 (6)
Tmax

the point x is accepted as a candidate point. Oth­
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erwise, repeat the selection again until N sample 
points are selected. After N sample points have been 
selected, the points are checked to see whether they 
are in the feasible region (i.e. satisfy design func- 
tions) or not. Then the estimated yield Y is

，、 1 A
Yf *

4^ ⑺
丄、i=l

where s. is the number of points satisfying the 
design functions.

In order to examine the relation between the pre­
cision of the simulation and the number of the sam­
pling points, let us assume Nt trials were performed. 
Then the average Y of estimated yield Y i is

‘ N
(8) 

rw i=i

Then the mean of Y is

E&) 타如

where 卩丫 is the population mean, and the variance 
is

eW-"] = g (9)

Because the standard deviation is a measure of 
the expected error of the estimation and the square 
root of the variance, the expected enor is inversely 
proportional to the square root of the sample numb­
ers N.

33 Integration of genetic algorithm and monte 
ca거o simulation

In tolerance optimization problems, evaluation 
of the yield has been the critical point in the op­
timization processes. Accurate Monte Carlo simu­
lation is not feasible due to the high computation 
cost because many function evaluations are typ­
ically required by numerical optimization schemes. 
A reasonable idea can be raised by carefully con­
sidering the nature of genetic algorithms and the 
difficulties of the yield estimation. Very coarse 
Monte Carlo sim미ation in evaluating multivariate 

integration yield could be used if genetic algorithm 
robustly guides the search. Similar approach show­
ed good performance in optimal tolerance al­
lotment problems(12) which determine a set of tol­
erances minimizing total manufacturing cost with 
the constraints of function requirements and min­
imum yield.

Each iteration of the proposed procedure is com­
posed of two steps. At the first step, a set of vari­
ables is selected as the initial population. Then the 
yield is evaluated by Monte Carlo simulation in 
the analysis step. As a synthesis step, genetic al­
gorithm perturbs the population using the three 
steps: reproduction, cross-over, and mutation.

4. Problem Modeling

In the design centering problem, the objective is 
to maximize the yield. Because the original idea of 
the genetic algorithm is the maximization of the fit­
ness function, the fitness proportionate repro­
duction scheme can be used without any fitness 
inversion. However, in order to prevent the al­
gorithm from premature convergence and stalling, 
the modified linear fitness scaling scheme is used.

The design variables are center dimensions in 
the design centering problem. Therefore the po­
pulation structure of this problem is:

Xcl=(XCw XC12,…，Xcln)
Xc2 ~ (Xc2b …，Xc2n) (】。)

Xcp = (Xcpi，Xcp2，Xcpn)

where p is the size of the population.
A string is composed of n substrings. Each sub­

string represents the candidate design centers for 
each dimension. A substring is mapped onto the 
design center interval [Xcmin，When a string 
is composed of 8 substrings which have binary 
string of length 6, the full length of the string is 48. 
Then the precision of the discretization, it, is

Xcmax Xcmi血 
63

The flowchart of the tolerance centering is
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［봂I
Fig. 4. Flowchart of design centering.

shown in Fig. 4.

5. Results and Analysis

An example problem is selected and modified 
from Lee and Woo's paper151. The shape of the as­
sembly is shown in Fig. 5. Design functions repre- 
se마 the clearance conditions for the assembly.

The tolerance f。호 each dimension is set as fol­
lows; t^O.0040, t2=0.0023, 0=00025, ^=0.0053, 
&그。.0143, G끄0.0021, t7=0.0015 and 蚌0.0020. The 
yield for the given tolerance set and nominal di­
mensions is calculated by the Monte Carlo simu­
lation with the design functions. The calculated 
yield for original nominal dimension is 57.17% 
(simulation 100,000 times). The results of a test

Fl(x) = - X4 - + 5.005

F2(x) »X2-X1-X8 + X7 - 0.0003

F戒x) 3X7-X6-X3 + X2 + 0.001

F4x) = X4-X3-X6 - 0.0003

Fs(x) + 4.985

Ffi(x) « - X2 + Xi + X8 - X7 + 0.0071

FKx) = - X7 + xg + xj - X2 - 0.005

Fg(x) = *X4  + »3 + x6 + 0.0071

Fig. 5. Example for design centering.

run are given in Table 1. For the te어 run, the 
number of sampling points was 30 and the gen­
eration number was 150, The maximized yield is 
79.11%. Therefore the yield has increased about 
22% by adjusting the centers.

Fig. 6 shows the convergence of the algorithm 
for 30 sampling points and 100 sampling points. 
At the initial stage, the yields are extremely small 
due to the random selection of the candidate di­
mensions. As the gener쵸tion proceeds, the yields 
approach to maximum value. As expected, the al­
gorithm converges in fewer generations when larg-
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Table 1. The results design centering

Variable Tolerance Nominal 
Dimension

Design
Center

Xi 0.0040 1.0 0.99981
X2 0.0023 2.0 2.00143
x3 0.0025 3.0 3.00085
X4 0.0053 4.0 4.00194
X5 0.0143 1.0 0.99433
X6 0.0021 0.998 0.99810
X? 0.0015 2.0 2.00012
X8 0.0020 2.998 2.99873

Yield 57.17% 79.71%

er sampling numbers are used for the Monte Carlo 
simulation. The computational complexity of an al­
gorithm can be represented by various measure­
ments such as: the number of arithmetic operations, 
the number of function evaluations, the number of 
iterations, or computation time. The time com­
plexity of the computation in this algorithm is the 
sum of the time spent for the Monte Carlo simu­
lation and the time spent for the genetic algorithm. 
Simple experiments were performed to compare 
the computation time for the Monte Carlo simu­
lation and the genetic algorithm. In performing the 
algorithm with 100 sampling points and 100 gen­
erations, the CPU time spent for the Monte Carlo

simulation and the genetic algorithm was 776 
seconds and 9.2 seconds each on Apollo DN 5500 
workstation. Therefore the computation time for 
the genetic algorithm is very small compared to 
the time associated with the Monte Carlo simu­
lation. Because the computation time for the 
Monte Carlo simulation is exactly proportional to 
the number of the sampling points, the com­
putation effort is defined as the generation number 
multiplied by the sampling points number and this 
product can be used as a measurement of the time 
complexity. Fig. 7 shows the convergence of the al­
gorithm in terms of the computation effort for each 
case. These two figures show that the algorithm 
converges faster when smaller number of sampling 
points are used even though it takes more gen­
erations.

6. Conclusions

A strategy which is presented in this paper can 
be utilized in appropriate manufacturing situations 
and will give 용。。d solutions in modest computing 
time. In fact, solving design centering problems is 
not trivial. The cost function modeling and the de­
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termination of the design functions take substantial 
time and effort. Therefore the effort for modeling 
the problem would be much larger than that for 
solving the problem. Some domain approximation 
schemes have advantages in short computation 
time. However those algorithms often give non op­
timal solutions with deviated yields. Therefore, the 
results are inappropriate to be utilized in practical 
design tasks.

This research suggests a new approach to solve 
other stochastic optimization problems. The com­
bination of robust optimization methods and ap­
proximated simulation schemes would give promis­
ing results for many stochastic optimization prob­
lems which are inappropriate for mathematical pro­
gramming.

Useful extensions of this research can be sug­
gested for future work. Genetic algorithms have 
been studied as tools for Al (artificial intelligence) 
with remarkable success. In tolerancing problems, 
problem modeling procedures are as important as 
solution procedures. Shape tolerances would be 
represented by more complicated mathematical 
forms. Other design factors (i.e. material strength, 
endurance period, fatigue effect, or reliability) also 
could be considered as stochastic design variables 
in a design project. In those situations, problem 
modeling becomes complicated. Other extensions 
can be suggested from a practical view point. A 
well designed user interface will facilitate the use 
of the new algorithms. The algorithms would be 
more useful if the simulation for arbitrary non-nor- 
mal distributions (e.g. gamma distribution) are im­
plemented because the distributions in real world 
are not always normal.
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