• Title/Summary/Keyword: Simulated military training system

Search Result 7, Processing Time 0.021 seconds

The Design and Implementation of Simulated Threat Generator based on MITRE ATT&CK for Cyber Warfare Training (사이버전 훈련을 위한 ATT&CK 기반 모의 위협 발생기 설계 및 구현)

  • Hong, Suyoun;Kim, Kwangsoo;Kim, Taekyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.797-805
    • /
    • 2019
  • Threats targeting cyberspace are becoming more intelligent and increasing day by day. To cope with such cyber threats, it is essential to improve the coping ability of system security officers. In this paper, we propose a simulated threat generator that automatically generates cyber threats for cyber defense training. The proposed Simulated Threat Generator is designed with MITRE ATT & CK(Adversarial Tactics, Techniques and Common Knowledge) framework to easily add an evolving cyber threat and select the next threat based on the threat execution result.

Extracting the Point of Impact from Simulated Shooting Target based on Image Processing (영상처리 기반 모의 사격 표적지 탄착점 추출)

  • Lee, Tae-Guk;Lim, Chang-Gyoon;Kim, Kang-Chul;Kim, Young-Min
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.117-128
    • /
    • 2010
  • There are many researches related to a simulated shooting training system for replacing the real military and police shooting training. In this paper, we propose the point of impact from a simulated shooting target based on image processing instead of using a sensor based approach. The point of impact is extracted by analyzing the image extracted from the camera on the muzzle of a gun. The final shooting result is calculated by mapping the target and the coordinates of the point of impact. The recognition system is divided into recognizing the projection zone, extracting the point of impact on the projection zone, and calculating the shooting result from the point of impact. We find the vertices of the projection zone after converting the captured image to the binary image and extract the point of impact in it. We present the extracting process step by step and provide experiments to validate the results. The experiments show that exact vertices of the projection area and the point of impact are found and a conversion result for the final result is shown on the interface.

SIA-LVC : Scalable Interworking Architecture for Military L-V-C Training Systems Based on Data Centric Middleware (SIA-LVC: 데이터 중심 미들웨어 기반 확장성 있는 국방 L-V-C 훈련체계 연동 아키텍쳐)

  • Kim, Won-Tae;Park, Seung-Min
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.11
    • /
    • pp.393-402
    • /
    • 2016
  • A Military L-V-C system consists of distributed complex systems integrating Live systems working on physical wall-clock time, Virtual systems ruled by virtually pseudo realtime events on a computer, and Constructive systems only depending on the causal relationship between the continuous events. Recently many needs for L-V-C training systems are increasing in order to achieve the maximum training effects with low costs. While theoretical/logical researches or only partially interworking technologies have been proposed, there are few perfect interworking architectures for totally interoperating L-V-C systems in world-wide. In this paper, we design and develop a novel interworking architecture based on data centric middleware for the consistent global time with the same states on the entire L-V-C data and events by means of integrating the heterogeneous distributed middleware standards of each L-V-C system. In addition, simulated L-V-C systems based on real systems will be used for the efficiency and performance of the developed interworking architecture.

Analysis on Causal Factors Affecting the Stress of Pilots by the Environmental Differences between Live-Virtual Simulation (Live-Virtual 시뮬레이션 환경차이에 따른 조종사 스트레스 유발요인 분석)

  • Kim, Jinju;Kim, Sungho;Seol, Hyeonju;Jee, Cheolkyu;Hong, Youngseok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Recently, Live-Virtual-Constructive (L-V-C) integrate training system has proposed as a solution for the problems such as limitation of training areas, increase of mission complexity, rise in oil prices. In order to integrate each training system into the one effectively, we should solve the issue about stress of pilots by the environmental differences between Live and Virtual simulation which could be occurred when each system is connected together. Although it was already examined in previous study that the psychological effects on pilots was occurred by the environmental differences between actual and simulated flights, the study did not include what the causal factors affecting psychological effects are. The aim of this study is to examine which environmental factors that cause pilots' psychological effects. This study analyzed the biochemical stress hormone, cortisol to measure the pilots' psychological effects and cortisol was measured using Enzyme-linked immunoassay (EIA). A total of 40 pilots participated in the experiment to compare the differences in pilots' cortisol response among live simulation, virtual simulation, and the virtual simulation applying three environmental factors (gravity force, noise, and equipment) respectively. As a result, there were significant differences in cortisol level when applied the gravity force and equipment factors to the virtual simulation, while there was no significant difference in the case of the noise factor. The results from this study can be used as a basis for the future research on how to make L-V system by providing minimum linkage errors and design the virtual simulator that can reduce the differences in the pilots' psychological effects.

A Study for Autonomous Intelligence of Computer-Generated Forces (가상군(Computer-Generated Forces)의 자율지능화 방안 연구)

  • Han, Chang-Hee;Cho, Jun-Ho;Lee, Sung-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • Modeling and Simulation(M&S) technology gets an attention from various parts such as industry and military. Especially, military uses the technology to cope with a different situation from the one in the Cold War and maximize the effect of training against the cost in the new environment. In order for the training based on M&S technology to be effective, the situations of a battlefield and a combat must be more realistically simulated. For this, a technique development on Computer-Generated Forces(CGF) which represents a unit's simulation logic and a human's simulated behaviors is focused. The CGF simulating a human's behaviors can be used in representing an enemy force, experimenting behaviors in a future war, and developing a new combat idea. This paper describes a methodology to accomplish Computer-Generated Forces' autonomous intelligence. It explains the process of applying a task behavior list based on the METT+T element onto CGFs. On the other hand, in the domain knowledge of military field manual, fuzzy facts such as "fast" and "sufficient" whose real values should be decided by domain experts can be easily found. In order to efficiently implement military simulation logics involved with such subjectivity, using a fuzzy inference methodology can be effective. In this study, a fuzzy inference methodology is also applied.

Implementation of Wireless Multiple Integrated Laser Engagement System using ZigBee-based Persinal Area Network (ZigBee기반 개인영역망을 사용한 무선 다중 통합 레이저 교전 시스템의 구현)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • We realized a wireless multiple integrated laser engagement system composed of personal area network using Zigbee. The wireless laser detector had function of analog signal processor, decoder and wireless communication. However, it should consume low power and be small and light in order to be attached to a soldier's body. The decoder was realized in software to be small and light. We induced low power consumption as reducing the load of system using a narrow band optical filter. The fabricated wireless laser detector functioned well in optically noisy environment. Although the communication to the player unit through the wireless personal area network was dependent on the attachment place it was perfectly worked with transmission power of -40.2dBm or more.

Relevance Verification of Staff Organizations using System Dynamics (시스템 다이내믹스 기법을 활용한 참모부 조직편성 적절성 검증)

  • Lee, Cheong-Su;Kim, Chang-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.53-63
    • /
    • 2018
  • Since warfare surroundings getting complex and diverse in the future, it is not simple to make appropriate structures and organizations for military groups along the phenomenon. Therefore, this study proposes a methodology of verification for army staff's structure and organization by units in the future using System Dynamics(SD). The procedure of using SD for the verification is a calculation of database(DB), the design of causal loop diagram, and the simulation and analysis. First, DB such as individuals' workload and time is calculated through observation after a real group of staff. Second, the causal loop diagram is considered by a flow of task, and it is modeled. Third, the DB is entered into the model and simulated for analyzing of appropriacy. This study used Powersim program for designing the SD model. One of the weaknesses of the methodology of this study is possibilities of a different result by the DB by observers and perspectives by analysts. As supplementation for the weakness, this study includes research analysis and surveys for the total analysis. The meaning of this study is that it suggests a methodology of warfighting experimentation to analyze structure and organization of military groups with quantifying suitability in the scientific method.