• Title/Summary/Keyword: Similarity Learning

Search Result 499, Processing Time 0.022 seconds

The Methodology of the Golf Swing Similarity Measurement Using Deep Learning-Based 2D Pose Estimation

  • Jonghyuk, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • In this paper, we propose a method to measure the similarity between golf swings in videos. As it is known that deep learning-based artificial intelligence technology is effective in the field of computer vision, attempts to utilize artificial intelligence in video-based sports data analysis are increasing. In this study, the joint coordinates of a person in a golf swing video were obtained using a deep learning-based pose estimation model, and based on this, the similarity of each swing segment was measured. For the evaluation of the proposed method, driver swing videos from the GolfDB dataset were used. As a result of measuring swing similarity by pairing swing videos of a total of 36 players, 26 players evaluated that their other swing sequence was the most similar, and the average ranking of similarity was confirmed to be about 5th. This ensured that the similarity could be measured in detail even when the motion was performed similarly.

Similarity Analysis of Programs through Linear Regression of Code Distribution (코드 분포의 선형 회귀를 이용한 프로그램 유사성 분석)

  • Lim, Hyun-il
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1357-1363
    • /
    • 2018
  • In addition to advances in information technology, machine learning approach is applied to a variety of applications, and is expanding to a variety of areas. In this paper, we propose a software analysis method that applies linear regression to analyse software similarity from the code distribution of the software. The characteristics of software can be expressed by instructions contained within the program, so the distribution information of instructions is used as learning data. In addition, a learning procedure with the learning data generates a linear regression model for software similarity analysis. The proposed method is evaluated with real world Java applications. The proposed method is expected to be used as a basic technique to determine similarity of software. It is also expected to be applied to various software analysis techniques through machine learning approaches.

Measuring gameplay similarity between human and reinforcement learning artificial intelligence (사람과 강화학습 인공지능의 게임플레이 유사도 측정)

  • Heo, Min-Gu;Park, Chang-Hoon
    • Journal of Korea Game Society
    • /
    • v.20 no.6
    • /
    • pp.63-74
    • /
    • 2020
  • Recently, research on automating game tests using artificial intelligence agents instead of humans is attracting attention. This paper aims to collect play data from human and artificial intelligence and analyze their similarity as a preliminary study for game balancing automation. At this time, constraints were added at the learning stage in order to create artificial intelligence that can play similar to humans. Play datas obtained 14 people and 60 artificial intelligence by playing Flippy bird games 10 times each. The collected datas compared and analyzed for movement trajectory, action position, and dead position using the cosine similarity method. As a result of the analysis, an artificial intelligence agent with a similarity of 0.9 or more with humans was found.

Development of Personalized Learning Course Recommendation Model for ITS (ITS를 위한 개인화 학습코스 추천 모델 개발)

  • Han, Ji-Won;Jo, Jae-Choon;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.21-28
    • /
    • 2018
  • To help users who are experiencing difficulties finding the right learning course corresponding to their level of proficiency, we developed a recommendation model for personalized learning course for Intelligence Tutoring System(ITS). The Personalized Learning Course Recommendation model for ITS analyzes the learner profile and extracts the keyword by calculating the weight of each word. The similarity of vector between extracted words is measured through the cosine similarity method. Finally, the three courses of top similarity are recommended for learners. To analyze the effects of the recommendation model, we applied the recommendation model to the Women's ability development center. And mean, standard deviation, skewness, and kurtosis values of question items were calculated through the satisfaction survey. The results of the experiment showed high satisfaction levels in accuracy, novelty, self-reference and usefulness, which proved the effectiveness of the recommendation model. This study is meaningful in the sense that it suggested a learner-centered recommendation system based on machine learning, which has not been researched enough both in domestic, foreign domains.

Classifying Images of The ASL Alphabet using Dual Homogeneous CNNs Structure (이중 동종 CNN 구조를 이용한 ASL 알파벳의 이미지 분류)

  • Erniyozov Shokhrukh;Man-Sung Kwan;Seong-Jong Park;Gwang-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.449-458
    • /
    • 2023
  • Many people think that sign language is only for people who are deaf and cannot speak, but of course it is necessary for people who want to talk with them. One of the biggest challenges in ASL(American Sign Language) alphabet recognition is the high inter-class similarities and high intra-class variance. In this paper, we proposed an architecture that can overcome these two problems, which performs similarity learning to reduces inter-class similarities and intra-class variance between images. The proposed architecture consists of the same convolutional neural network with a double configuration that shares parameters (weights and biases) and also applies the Keras API to reduce similarity learning and variance through this pathway. The similarity learning results the use of the dual CNN shows that the accuracy is improved by reducing the similarity and variability between classes by not including the poor results of the two classes.

An Analysis of Students' Communication in Lessons for the Geometric Similarity Using AlgeoMath (알지오매스를 활용한 도형의 닮음 수업에서 학생들의 의사소통 분석)

  • Kim, Yeonha;Shin, Bomi
    • Journal of the Korean School Mathematics Society
    • /
    • v.26 no.2
    • /
    • pp.111-135
    • /
    • 2023
  • This study conducted a student-centered inquiry lesson on the similarity of figures using AlgeoMath, with student learning aspects analyzed from a communication perspective. This approach aimed to inform pedagogical implications related to teaching geometric similarity. Through utilizing AlgeoMath, students were able to visually confirm that their chosen figures were similar, experiencing key mathematical concepts such as the ratio of similarity to the area of similar figures, and congruency and similarity conditions of triangles. In the lessons applying this concept, we categorized the features of similarity learning displayed by students, as seen in the communication aspects of their exploratory activities, into 'Understanding similarity ratios', 'Grasping conditions of similarity in triangles', and 'Comparing concepts of congruency and similarity'. Through exploratory activities based on AlgeoMath, students discussed the meaning and mathematical relationships of key concepts related to similarity, such as the ratio of similarity to the area of figures, and the meaning and conditions of congruence and similarity in triangles. By improving misconceptions about the similarity of figures, they were able to develop deeper mathematical understanding. This study revealed that in teaching and learning the geometric similarity using AlgeoMath, obtaining meaningful pedagogical outcome was not solely due to the features of the AlgeoMath environment, but also largely depended on the teacher's guidance and intervention that stimulated students' thinking.

Realtime Object Region Detection Robust to Vehicle Headlight (차량의 헤드라이트에 강인한 실시간 객체 영역 검출)

  • Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases

  • Zhuang, Yi;Chen, Shuai;Jiang, Nan;Hu, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2359-2376
    • /
    • 2022
  • With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.

Effect of Input Data Video Interval and Input Data Image Similarity on Learning Accuracy in 3D-CNN

  • Kim, Heeil;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.208-217
    • /
    • 2021
  • 3D-CNN is one of the deep learning techniques for learning time series data. However, these three-dimensional learning can generate many parameters, requiring high performance or having a significant impact on learning speed. We will use these 3D-CNNs to learn hand gesture and find the parameters that showed the highest accuracy, and then analyze how the accuracy of 3D-CNN varies through input data changes without any structural changes in 3D-CNN. First, choose the interval of the input data. This adjusts the ratio of the stop interval to the gesture interval. Secondly, the corresponding interframe mean value is obtained by measuring and normalizing the similarity of images through interclass 2D cross correlation analysis. This experiment demonstrates that changes in input data affect learning accuracy without structural changes in 3D-CNN. In this paper, we proposed two methods for changing input data. Experimental results show that input data can affect the accuracy of the model.

Gated Recurrent Unit Architecture for Context-Aware Recommendations with improved Similarity Measures

  • Kala, K.U.;Nandhini, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.538-561
    • /
    • 2020
  • Recommender Systems (RecSys) have a major role in e-commerce for recommending products, which they may like for every user and thus improve their business aspects. Although many types of RecSyss are there in the research field, the state of the art RecSys has focused on finding the user similarity based on sequence (e.g. purchase history, movie-watching history) analyzing and prediction techniques like Recurrent Neural Network in Deep learning. That is RecSys has considered as a sequence prediction problem. However, evaluation of similarities among the customers is challenging while considering temporal aspects, context and multi-component ratings of the item-records in the customer sequences. For addressing this issue, we are proposing a Deep Learning based model which learns customer similarity directly from the sequence to sequence similarity as well as item to item similarity by considering all features of the item, contexts, and rating components using Dynamic Temporal Warping(DTW) distance measure for dynamic temporal matching and 2D-GRU (Two Dimensional-Gated Recurrent Unit) architecture. This will overcome the limitation of non-linearity in the time dimension while measuring the similarity, and the find patterns more accurately and speedily from temporal and spatial contexts. Experiment on the real world movie data set LDOS-CoMoDa demonstrates the efficacy and promising utility of the proposed personalized RecSys architecture.