DOI QR코드

DOI QR Code

Development of Personalized Learning Course Recommendation Model for ITS

ITS를 위한 개인화 학습코스 추천 모델 개발

  • Han, Ji-Won (Dept. of Computer Science and Engineering, Korea University) ;
  • Jo, Jae-Choon (Dept. of Computer Science and Engineering, Korea University) ;
  • Lim, Heui-Seok (Dept. of Computer Science and Engineering, Korea University)
  • Received : 2018.08.07
  • Accepted : 2018.10.20
  • Published : 2018.10.28

Abstract

To help users who are experiencing difficulties finding the right learning course corresponding to their level of proficiency, we developed a recommendation model for personalized learning course for Intelligence Tutoring System(ITS). The Personalized Learning Course Recommendation model for ITS analyzes the learner profile and extracts the keyword by calculating the weight of each word. The similarity of vector between extracted words is measured through the cosine similarity method. Finally, the three courses of top similarity are recommended for learners. To analyze the effects of the recommendation model, we applied the recommendation model to the Women's ability development center. And mean, standard deviation, skewness, and kurtosis values of question items were calculated through the satisfaction survey. The results of the experiment showed high satisfaction levels in accuracy, novelty, self-reference and usefulness, which proved the effectiveness of the recommendation model. This study is meaningful in the sense that it suggested a learner-centered recommendation system based on machine learning, which has not been researched enough both in domestic, foreign domains.

학습코스 선정에 많은 어려움과 시행착오를 겪고 있는 사용자들에게 수준별 학습코스를 제공하기 위해, ITS(Intelligence Tutoring System)를 위한 동적인 학습자 맞춤형 학습코스 추천 모델을 개발하였다. 이를 위해, 개인화 학습코스 추천모델에서는 먼저 학습자 프로파일을 분석하고, 단어별 가중치를 계산하여 핵심 키워드를 추출한다. 추출된 단어는 Cosine Similarity 기법을 통해 유사도를 측정하고, 최종적으로 유사도가 높은 상위 3개 과정이 학습자에게 추천된다. 추천모델의 효과를 분석하기 위해, 경기도 소재 교육기관에 추천모델을 적용하였고, 만족도 조사를 통하여 설문 항목별 평균, 표준편차, 왜도, 첨도 값을 계산하였다. 실험결과, 정확성, 새로움, 자기참조, 유용성에서 높은 만족도를 보였으며, 추천모델의 실효성을 검증했다. 본 연구는 그동안 국내 외에서 충분히 다뤄지지 않았던 기계학습 중심의 맞춤형 학습코스를 추천했다는 점에서 의미가 있다.

Keywords

References

  1. Naser, S. A., Ahmed, A., Al-Masri, N. & Abu Sultan, Y.(2011). Human Computer Interaction Design of the LP-ITS: Linear Programming Intellignet Tutoring Systems, International Journal of Artificial Intelligence & Applications (IJAIA), 2(3), 60-70. DOI : 10.5121/ijaia.2011.2306
  2. Wang. Z., Yu. X. & Feng. N.(2014). An improved collaborative movie recommendation system using computational intelligence, Journal of Visual Languages and Computing, 25(6), 667-675. DOI : 10.1016/j.jvlc.2014.09.011
  3. S. S. A. Naser.(2012). A Qualitative Study of LP-ITS: Linear Programming Intellignet Tutoring Systems, International Journal of Computer Science & Information Technology, 4(1), 209-220. DOI : 10.5121/ijcsit.2012.4116
  4. S. Y. Pi.(2015). Educational Utilization of Smart Devices in the Convergence Education Era, Journal of digital Convergence, 13(6), 29-37. DOI : 10.14400/JDC.2015.13.6.29
  5. E. A. Rashid., S. B. Patnaik., & V. C. Bhattacherjee.(2014). Machine Learning and Software Quality Prediction: As an Expert System, Journal of Information Engineering and Electronic Business, 6(2), 9-27. DOI : 10.5815/ijieeb.2014.02.02
  6. C. R. Beal., I. Arroyo., P. R. Cohen., B. P. Woolf., & C. R. Beal.(2010). Evaluation of AnimalWatch: An intelligent tutoring system for arithmetic and fractions. J. Interact. Online Learn., 1(9), 64-77.
  7. Baker, R. S.(2016). Stupid tutoring system, intelligent humans. International Journal of Artificial Intelligence in Education, 26(2), 600-614. DOI : 10.1007/s40593-016-0105-0
  8. C. M. Chen. & C. J. Chung.(2007). Personalized mobile English vocabulary learning system based on item response theory and learning memory cycle. Computers & Education. 51(2), 624-645. DOI : 10.1016/j.compedu.2007.06.011
  9. K. S. Shim.(2014). Syllable-based Probabilistic Models for Korean Morphological Analysis, Journal of KIISE, 41(9), 642-651. DOI : 10.5626/JOK.2014.41.9.642
  10. Linden, G., Smith, B., & York, J.(2003). Amazon.com recommendations: item-to-item collaborative filtering, IEEE Internet Computing, 7(1), 76-80. DOI : 10.1109/MIC.2003.1167344
  11. W. Han, J. C. Jo, H. S. Ji, & H. S. Lim (2016). A collaborative recommender system for learning courses considering the relevance of a learner's learning skills. Cluster Computing, 19(4), 2273-2284. DOI : 10.1007/s10586-016-0670-x
  12. K. B. Kim. & H. J. Cho.(2015). A Study on Smart Teaching Plan Production System Combined Education Profiling, Journal of digital Convergence, 13(3), 185-191. DOI : 10.14400/JDC.2015.13.3.185
  13. Golding. J. F.(2006) Predicting individual differences in motion sickness susceptibility by questionnaire, Personality and Individual Differences, 41(2), 237-248. DOI : 10.1016/j.paid.2006.01.012
  14. Dong Y., Sun Z. & Jia H.(2006). A Cosine Similarity-based Negative Selection Algorithm for Time Series Novelty Detection, Mechanical Systems and Signal Processing, 20(6), 1461-1472. DOI : 10.1016/j.ymssp.2004.12.006
  15. Abuhay, T. M., et al.(2018). Analysis of publication activity of computational science society in 2001-2017 using topic modelling and graph theory, Journal of Computational Science, 26, 193-204. DOI : 10.1016/j.jocs.2018.04.004
  16. Randall, W. Engle.(2016). Working Memory Capacity as Executive Attention. Current Directions in Psychological Science, 11(1), 19-23. DOI : 10.1111/1467-8721.00160